impl-tools-lib 0.7.1

Helper macros: autoimpl
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License in the LICENSE-APACHE file or at:
//     https://www.apache.org/licenses/LICENSE-2.0

use crate::{fields::Fields, SimplePath};
use proc_macro2::{Span, TokenStream};
use proc_macro_error::emit_error;
use quote::{ToTokens, TokenStreamExt};
use syn::punctuated::Punctuated;
use syn::spanned::Spanned;
use syn::token::{Brace, Comma, Semi};
use syn::{
    parse_quote, Attribute, FieldsNamed, GenericParam, Generics, Ident, ItemImpl, Path, Result,
    Token, Type, Variant, Visibility,
};

/// Attribute rule for [`Scope`]
///
/// Rules are matched via a path, e.g. `&["foo"]` matches `foo` and
/// `&["", "foo", "bar"]` matches `::foo::bar`.
///
/// Such rules are used to expand attributes within an `impl_scope!`.
pub trait ScopeAttr {
    /// Attribute path
    ///
    /// Rules are matched via a path, e.g. `&["foo"]` matches `foo` and
    /// `&["", "foo", "bar"]` matches `::foo::bar`.
    ///
    /// Note that we cannot use standard path resolution, so we match only a
    /// single path, as defined.
    fn path(&self) -> SimplePath;

    /// Whether repeated application is valid
    ///
    /// If this is false (the default), then an error will be omitted on
    /// repeated usage of the attribute. This mostly serves to emit better error
    /// messages in cases where the first application modifies the input.
    fn support_repetition(&self) -> bool {
        false
    }

    /// Function type of [`ScopeAttr`] rule
    ///
    /// Input arguments:
    ///
    /// -   `attr`: the invoking attribute. It is suggested to parse arguments
    ///     using [`Attribute::parse_args`] or [`Attribute::parse_args_with`].
    /// -   `scope`: mutable reference to the implementation scope. Usually
    ///     an attribute rule function will read data from the scope and append its
    ///     output to [`Scope::generated`].
    fn apply(&self, attr: Attribute, scope: &mut Scope) -> Result<()>;
}

/// Content of items supported by [`Scope`] that are not common to all variants
#[derive(Debug)]
pub enum ScopeItem {
    /// A [`syn::ItemEnum`], minus common parts
    Enum {
        /// `enum`
        token: Token![enum],
        /// `{ ... }`
        brace: Brace,
        /// Variants of enum
        variants: Punctuated<Variant, Comma>,
    },
    /// A [`syn::ItemStruct`], minus common parts
    ///
    /// Uses custom [`Fields`], supporting field initializers.
    Struct {
        /// `struct`
        token: Token![struct],
        /// Fields of struct
        fields: Fields,
    },
    /// A [`syn::ItemType`], minus common parts
    Type {
        /// `type`
        token: Token![type],
        /// `=`
        eq_token: Token![=],
        /// Target type
        ty: Box<Type>,
    },
    /// A [`syn::ItemUnion`], minus common parts
    Union {
        /// `union`
        token: Token![union],
        /// Fields of union
        fields: FieldsNamed,
    },
}

impl ScopeItem {
    /// Take span of `enum`/`struct`/`type`/`union` token
    pub fn token_span(&self) -> Span {
        match self {
            ScopeItem::Enum { token, .. } => token.span,
            ScopeItem::Struct { token, .. } => token.span,
            ScopeItem::Type { token, .. } => token.span,
            ScopeItem::Union { token, .. } => token.span,
        }
    }
}

/// Contents of `impl_scope!`
///
/// `impl_scope!` input consists of one item (an `enum`, `struct`, `type` alias
/// or `union`) followed by any number of implementations, and is parsed into
/// this struct.
///
/// On its own, `impl_scope!` provides `impl Self` syntax, with the following
/// expansion done within [`Self::expand`] (after application [`ScopeAttr`]
/// rules):
///
/// -   `impl Self { ... }` expands to `impl #impl_generics #ty_ident #ty_generics #where_clause { ... }`
/// -   `impl Self where #clause2 { ... }` expands similarly, but using the combined where clause
///
/// The secondary utility of `impl_scope!` is to allow attribute expansion
/// within itself via [`ScopeAttr`] rules. These rules may read the type item
/// (which may include field initializers in the case of a struct), read
/// accompanying implementations, and even modify them.
#[derive(Debug)]
pub struct Scope {
    /// Outer attributes on the item
    pub attrs: Vec<Attribute>,
    /// Optional `pub`, etc.
    pub vis: Visibility,
    /// Item identifier
    pub ident: Ident,
    /// Item generics
    pub generics: Generics,
    /// The item
    pub item: ScopeItem,
    /// Trailing semicolon (type alias and unit struct only)
    pub semi: Option<Semi>,
    /// Implementation items
    pub impls: Vec<ItemImpl>,
    /// Output of [`ScopeAttr`] rules
    ///
    /// This does not contain any content from input, only content generated
    /// from [`ScopeAttr`] rules. It is appended to output as an item (usually
    /// a [`syn::ImplItem`]), after [`Self::impls`] items.
    pub generated: Vec<TokenStream>,
}

impl Scope {
    /// Apply attribute rules
    ///
    /// The supplied `rules` are applied in the order of definition, and their
    /// attributes removed from the item.
    pub fn apply_attrs(&mut self, find_rule: impl Fn(&Path) -> Option<&'static dyn ScopeAttr>) {
        let mut applied: Vec<(Span, *const dyn ScopeAttr)> = Vec::new();

        let mut i = 0;
        while i < self.attrs.len() {
            if let Some(rule) = find_rule(&self.attrs[i].path) {
                let attr = self.attrs.remove(i);

                if !rule.support_repetition() {
                    // We compare the fat pointer (including vtable address;
                    // the data may be zero-sized and thus not unique).
                    // We consider two rules the same when data pointers and
                    // vtables both compare equal.
                    let span = attr.span();
                    let ptr = rule as *const dyn ScopeAttr;
                    #[allow(clippy::vtable_address_comparisons)]
                    if let Some(first) = applied.iter().find(|(_, p)| std::ptr::eq(*p, ptr)) {
                        emit_error!(span, "repeated use of attribute not allowed");
                        emit_error!(first.0, "first usage here");
                        continue;
                    }
                    applied.push((span, ptr));
                }

                if let Err(err) = rule.apply(attr, self) {
                    emit_error!(err.span(), "{}", err);
                }
                continue;
            }

            i += 1;
        }
    }

    /// Expand `impl Self`
    ///
    /// This is done automatically by [`Self::expand`]. It may be called earlier
    /// by a [`ScopeAttr`] if required. Calling multiple times is harmless.
    pub fn expand_impl_self(&mut self) {
        for impl_ in self.impls.iter_mut() {
            if impl_.self_ty == parse_quote! { Self } {
                let mut ident = self.ident.clone();
                ident.set_span(impl_.self_ty.span());
                let (_, ty_generics, _) = self.generics.split_for_impl();
                impl_.self_ty = parse_quote! { #ident #ty_generics };
                extend_generics(&mut impl_.generics, &self.generics);
            }
        }
    }

    /// Generate the [`TokenStream`]
    ///
    /// This is a convenience function. It is valid to, instead, (1) call
    /// [`Self::expand_impl_self`], then (2) use the [`ToTokens`] impl on
    /// `Scope`.
    pub fn expand(mut self) -> TokenStream {
        self.expand_impl_self();
        self.to_token_stream()
    }
}

mod parsing {
    use super::*;
    use crate::fields::parsing::data_struct;
    use syn::parse::{Parse, ParseStream};
    use syn::spanned::Spanned;
    use syn::{braced, bracketed, AttrStyle, Error, Field, Lifetime, Path, TypePath, WhereClause};

    impl Parse for Scope {
        fn parse(input: ParseStream) -> Result<Self> {
            let attrs = input.call(Attribute::parse_outer)?;
            let vis = input.parse::<Visibility>()?;

            enum Token {
                Enum(Token![enum]),
                Struct(Token![struct]),
                Type(Token![type]),
                Union(Token![union]),
            }
            let lookahead = input.lookahead1();
            let token;
            if lookahead.peek(Token![enum]) {
                token = Token::Enum(input.parse()?);
            } else if lookahead.peek(Token![struct]) {
                token = Token::Struct(input.parse()?);
            } else if lookahead.peek(Token![type]) {
                token = Token::Type(input.parse()?);
            } else if lookahead.peek(Token![union]) {
                token = Token::Union(input.parse()?);
            } else {
                return Err(lookahead.error());
            }

            let ident = input.parse::<Ident>()?;
            let mut generics = input.parse::<Generics>()?;

            let item;
            let mut semi = None;
            match token {
                Token::Enum(token) => {
                    let (wc, brace, variants) = data_enum(input)?;
                    generics.where_clause = wc;
                    item = ScopeItem::Enum {
                        token,
                        brace,
                        variants,
                    };
                }
                Token::Struct(token) => {
                    let (wc, fields, semi_token) = data_struct(input)?;
                    generics.where_clause = wc;
                    semi = semi_token;
                    item = ScopeItem::Struct { token, fields };
                }
                Token::Type(token) => {
                    let eq_token = input.parse()?;
                    let ty = input.parse()?;
                    let semi_token = input.parse()?;
                    semi = Some(semi_token);
                    item = ScopeItem::Type {
                        token,
                        eq_token,
                        ty,
                    };
                }
                Token::Union(token) => {
                    let (wc, fields) = data_union(input)?;
                    generics.where_clause = wc;
                    item = ScopeItem::Union { token, fields };
                }
            }

            let mut impls = Vec::new();
            while !input.is_empty() {
                impls.push(parse_impl(&ident, input)?);
            }

            Ok(Scope {
                attrs,
                vis,
                ident,
                generics,
                item,
                semi,
                impls,
                generated: vec![],
            })
        }
    }

    fn parse_impl(in_ident: &Ident, input: ParseStream) -> Result<ItemImpl> {
        let mut attrs = input.call(Attribute::parse_outer)?;
        let defaultness: Option<Token![default]> = input.parse()?;
        let unsafety: Option<Token![unsafe]> = input.parse()?;
        let impl_token: Token![impl] = input.parse()?;

        let has_generics = input.peek(Token![<])
            && (input.peek2(Token![>])
                || input.peek2(Token![#])
                || (input.peek2(Ident) || input.peek2(Lifetime))
                    && (input.peek3(Token![:])
                        || input.peek3(Token![,])
                        || input.peek3(Token![>])
                        || input.peek3(Token![=]))
                || input.peek2(Token![const]));
        let mut generics: Generics = if has_generics {
            input.parse()?
        } else {
            Generics::default()
        };

        let mut first_ty: Type = input.parse()?;
        let self_ty: Type;
        let trait_;

        let is_impl_for = input.peek(Token![for]);
        if is_impl_for {
            let for_token: Token![for] = input.parse()?;
            let mut first_ty_ref = &first_ty;
            while let Type::Group(ty) = first_ty_ref {
                first_ty_ref = &ty.elem;
            }
            if let Type::Path(_) = first_ty_ref {
                while let Type::Group(ty) = first_ty {
                    first_ty = *ty.elem;
                }
                if let Type::Path(TypePath { qself: None, path }) = first_ty {
                    trait_ = Some((None, path, for_token));
                } else {
                    unreachable!();
                }
            } else {
                return Err(Error::new(for_token.span, "for without target trait"));
            }
            self_ty = input.parse()?;
        } else {
            trait_ = None;
            self_ty = first_ty;
        }

        generics.where_clause = input.parse()?;

        if self_ty != parse_quote! { Self }
            && !matches!(self_ty, Type::Path(TypePath {
                qself: None,
                path: Path {
                    leading_colon: None,
                    ref segments,
                }
            }) if segments.len() == 1 && segments.first().unwrap().ident == *in_ident)
        {
            return Err(Error::new(
                self_ty.span(),
                format!(
                    "expected `Self` or `{0}` or `{0}<...>` or `Trait for Self`, etc",
                    in_ident
                ),
            ));
        }

        let content;
        let brace_token = braced!(content in input);
        parse_attrs_inner(&content, &mut attrs)?;

        let mut items = Vec::new();
        while !content.is_empty() {
            items.push(content.parse()?);
        }

        Ok(ItemImpl {
            attrs,
            defaultness,
            unsafety,
            impl_token,
            generics,
            trait_,
            self_ty: Box::new(self_ty),
            brace_token,
            items,
        })
    }

    pub fn data_enum(
        input: ParseStream,
    ) -> Result<(Option<WhereClause>, Brace, Punctuated<Variant, Token![,]>)> {
        let where_clause = input.parse()?;

        let content;
        let brace = braced!(content in input);
        let variants = content.parse_terminated(Variant::parse)?;

        Ok((where_clause, brace, variants))
    }

    pub fn data_union(input: ParseStream) -> Result<(Option<WhereClause>, FieldsNamed)> {
        let where_clause = input.parse()?;
        let fields = parse_braced(input)?;
        Ok((where_clause, fields))
    }

    pub(crate) fn parse_braced(input: ParseStream) -> Result<FieldsNamed> {
        let content;
        let brace_token = braced!(content in input);
        let named = content.parse_terminated(Field::parse_named)?;
        Ok(FieldsNamed { brace_token, named })
    }

    fn parse_attrs_inner(input: ParseStream, attrs: &mut Vec<Attribute>) -> Result<()> {
        while input.peek(Token![#]) && input.peek2(Token![!]) {
            let pound_token = input.parse()?;
            let style = AttrStyle::Inner(input.parse()?);
            let content;
            let bracket_token = bracketed!(content in input);
            let path = content.call(Path::parse_mod_style)?;
            let tokens = content.parse()?;
            attrs.push(Attribute {
                pound_token,
                style,
                bracket_token,
                path,
                tokens,
            });
        }
        Ok(())
    }
}

mod printing {
    use super::*;

    impl ToTokens for Scope {
        fn to_tokens(&self, tokens: &mut TokenStream) {
            tokens.append_all(self.attrs.iter());
            self.vis.to_tokens(tokens);
            match &self.item {
                ScopeItem::Enum { token, .. } => token.to_tokens(tokens),
                ScopeItem::Struct { token, .. } => token.to_tokens(tokens),
                ScopeItem::Type { token, .. } => token.to_tokens(tokens),
                ScopeItem::Union { token, .. } => token.to_tokens(tokens),
            }
            self.ident.to_tokens(tokens);
            self.generics.to_tokens(tokens);
            match &self.item {
                ScopeItem::Enum {
                    brace, variants, ..
                } => {
                    self.generics.where_clause.to_tokens(tokens);
                    brace.surround(tokens, |tokens| {
                        variants.to_tokens(tokens);
                    });
                }
                ScopeItem::Struct { fields, .. } => match fields {
                    Fields::Named(fields) => {
                        self.generics.where_clause.to_tokens(tokens);
                        fields.to_tokens(tokens);
                    }
                    Fields::Unnamed(fields) => {
                        fields.to_tokens(tokens);
                        self.generics.where_clause.to_tokens(tokens);
                    }
                    Fields::Unit => {
                        self.generics.where_clause.to_tokens(tokens);
                    }
                },
                ScopeItem::Type { eq_token, ty, .. } => {
                    self.generics.where_clause.to_tokens(tokens);
                    eq_token.to_tokens(tokens);
                    ty.to_tokens(tokens);
                }
                ScopeItem::Union { fields, .. } => {
                    self.generics.where_clause.to_tokens(tokens);
                    fields.to_tokens(tokens);
                }
            }
            if let Some(semi) = self.semi.as_ref() {
                semi.to_tokens(tokens);
            }

            tokens.append_all(self.impls.iter());
            tokens.append_all(self.generated.iter());
        }
    }
}

// Support impls on Self by replacing name and summing generics
fn extend_generics(generics: &mut Generics, in_generics: &Generics) {
    if generics.lt_token.is_none() {
        debug_assert!(generics.params.is_empty());
        debug_assert!(generics.gt_token.is_none());
        generics.lt_token = in_generics.lt_token;
        generics.params = in_generics.params.clone();
        generics.gt_token = in_generics.gt_token;
    } else if in_generics.lt_token.is_none() {
        debug_assert!(in_generics.params.is_empty());
        debug_assert!(in_generics.gt_token.is_none());
    } else {
        if !generics.params.empty_or_trailing() {
            generics.params.push_punct(Default::default());
        }
        generics
            .params
            .extend(in_generics.params.clone().into_pairs());
    }

    // Strip defaults which are legal on the struct but not on impls
    for param in &mut generics.params {
        match param {
            GenericParam::Type(p) => {
                p.eq_token = None;
                p.default = None;
            }
            GenericParam::Lifetime(_) => (),
            GenericParam::Const(p) => {
                p.eq_token = None;
                p.default = None;
            }
        }
    }

    if let Some(ref mut clause1) = generics.where_clause {
        if let Some(ref clause2) = in_generics.where_clause {
            if !clause1.predicates.empty_or_trailing() {
                clause1.predicates.push_punct(Default::default());
            }
            clause1
                .predicates
                .extend(clause2.predicates.clone().into_pairs());
        }
    } else {
        generics.where_clause = in_generics.where_clause.clone();
    }
}