imap_next/stream.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
use std::{
convert::Infallible,
io::{ErrorKind, Read, Write},
};
use bytes::{Buf, BufMut, BytesMut};
#[cfg(debug_assertions)]
use imap_codec::imap_types::utils::escape_byte_string;
use thiserror::Error;
use tokio::{
io::{AsyncRead, AsyncReadExt, AsyncWrite, AsyncWriteExt},
net::TcpStream,
select,
};
use tokio_rustls::{rustls, TlsStream};
#[cfg(debug_assertions)]
use tracing::trace;
use crate::{Interrupt, Io, State};
pub struct Stream {
stream: TcpStream,
tls: Option<rustls::Connection>,
read_buffer: BytesMut,
write_buffer: BytesMut,
}
impl Stream {
pub fn insecure(stream: TcpStream) -> Self {
Self {
stream,
tls: None,
read_buffer: BytesMut::default(),
write_buffer: BytesMut::default(),
}
}
pub fn tls(stream: TlsStream<TcpStream>) -> Self {
// We want to use `TcpStream::split` for handling reading and writing separately,
// but `TlsStream` does not expose this functionality. Therefore, we destruct `TlsStream`
// into `TcpStream` and `rustls::Connection` and handling them ourselves.
//
// Some notes:
//
// - There is also `tokio::io::split` which works for all kind of streams. But this
// involves too much scary magic because its use-case is reading and writing from
// different threads. We prefer to use the more low-level `TcpStream::split`.
//
// - We could get rid of `TlsStream` and construct `rustls::Connection` directly.
// But `TlsStream` is still useful because it gives us the guarantee that the handshake
// was already handled properly.
//
// - In the long run it would be nice if `TlsStream::split` would exist and we would use
// it because `TlsStream` is better at handling the edge cases of `rustls`.
let (stream, tls) = match stream {
TlsStream::Client(stream) => {
let (stream, tls) = stream.into_inner();
(stream, rustls::Connection::Client(tls))
}
TlsStream::Server(stream) => {
let (stream, tls) = stream.into_inner();
(stream, rustls::Connection::Server(tls))
}
};
Self {
stream,
tls: Some(tls),
read_buffer: BytesMut::default(),
write_buffer: BytesMut::default(),
}
}
pub async fn flush(&mut self) -> Result<(), Error<Infallible>> {
// Flush TLS
if let Some(tls) = &mut self.tls {
tls.writer().flush()?;
encrypt(tls, &mut self.write_buffer, Vec::new())?;
}
// Flush TCP
write(&mut self.stream, &mut self.write_buffer).await?;
self.stream.flush().await?;
Ok(())
}
pub async fn next<F: State>(&mut self, mut state: F) -> Result<F::Event, Error<F::Error>> {
let event = loop {
match &mut self.tls {
None => {
// Provide input bytes to the client/server
if !self.read_buffer.is_empty() {
state.enqueue_input(&self.read_buffer);
self.read_buffer.clear();
}
}
Some(tls) => {
// Decrypt input bytes
let plain_bytes = decrypt(tls, &mut self.read_buffer)?;
// Provide input bytes to the client/server
if !plain_bytes.is_empty() {
state.enqueue_input(&plain_bytes);
}
}
}
// Progress the client/server
let result = state.next();
// Return events immediately without doing IO
let interrupt = match result {
Err(interrupt) => interrupt,
Ok(event) => break event,
};
// Return errors immediately without doing IO
let io = match interrupt {
Interrupt::Io(io) => io,
Interrupt::Error(err) => return Err(Error::State(err)),
};
match &mut self.tls {
None => {
// Handle the output bytes from the client/server
if let Io::Output(bytes) = io {
self.write_buffer.extend(bytes);
}
}
Some(tls) => {
// Handle the output bytes from the client/server
let plain_bytes = if let Io::Output(bytes) = io {
bytes
} else {
Vec::new()
};
// Encrypt output bytes
encrypt(tls, &mut self.write_buffer, plain_bytes)?;
}
}
// Progress the stream
if self.write_buffer.is_empty() {
read(&mut self.stream, &mut self.read_buffer).await?;
} else {
// We read and write the stream simultaneously because otherwise
// a deadlock between client and server might occur if both sides
// would only read or only write.
let (read_stream, write_stream) = self.stream.split();
select! {
result = read(read_stream, &mut self.read_buffer) => result,
result = write(write_stream, &mut self.write_buffer) => result,
}?;
};
};
Ok(event)
}
#[cfg(feature = "expose_stream")]
/// Return the underlying stream for debug purposes (or experiments).
///
/// Note: Writing to or reading from the stream may introduce
/// conflicts with `imap-next`.
pub fn stream_mut(&mut self) -> &mut TcpStream {
&mut self.stream
}
}
/// Take the [`TcpStream`] out of a [`Stream`].
///
/// Useful when a TCP stream needs to be upgraded to a TLS one.
#[cfg(feature = "expose_stream")]
impl From<Stream> for TcpStream {
fn from(stream: Stream) -> Self {
stream.stream
}
}
/// Error during reading into or writing from a stream.
#[derive(Debug, Error)]
pub enum Error<E> {
/// Operation failed because stream is closed.
///
/// We detect this by checking if the read or written byte count is 0. Whether the stream is
/// closed indefinitely or temporarily depends on the actual stream implementation.
#[error("Stream was closed")]
Closed,
/// An I/O error occurred in the underlying stream.
#[error(transparent)]
Io(#[from] tokio::io::Error),
/// An error occurred in the underlying TLS connection.
#[error(transparent)]
Tls(#[from] rustls::Error),
/// An error occurred while progressing the state.
#[error(transparent)]
State(E),
}
async fn read<S: AsyncRead + Unpin>(
mut stream: S,
read_buffer: &mut BytesMut,
) -> Result<(), ReadWriteError> {
#[cfg(debug_assertions)]
let old_len = read_buffer.len();
let byte_count = stream.read_buf(read_buffer).await?;
#[cfg(debug_assertions)]
trace!(
data = escape_byte_string(&read_buffer[old_len..]),
"io/read/raw"
);
if byte_count == 0 {
// The result is 0 if the stream reached "end of file" or the read buffer was
// already full before calling `read_buf`. Because we use an unlimited buffer we
// know that the first case occurred.
return Err(ReadWriteError::Closed);
}
Ok(())
}
async fn write<S: AsyncWrite + Unpin>(
mut stream: S,
write_buffer: &mut BytesMut,
) -> Result<(), ReadWriteError> {
while !write_buffer.is_empty() {
let byte_count = stream.write(write_buffer).await?;
#[cfg(debug_assertions)]
trace!(
data = escape_byte_string(&write_buffer[..byte_count]),
"io/write/raw"
);
write_buffer.advance(byte_count);
if byte_count == 0 {
// The result is 0 if the stream doesn't accept bytes anymore or the write buffer
// was already empty before calling `write_buf`. Because we checked the buffer
// we know that the first case occurred.
return Err(ReadWriteError::Closed);
}
}
Ok(())
}
#[derive(Debug, Error)]
enum ReadWriteError {
#[error("Stream was closed")]
Closed,
#[error(transparent)]
Io(#[from] tokio::io::Error),
}
impl<E> From<ReadWriteError> for Error<E> {
fn from(value: ReadWriteError) -> Self {
match value {
ReadWriteError::Closed => Error::Closed,
ReadWriteError::Io(err) => Error::Io(err),
}
}
}
fn decrypt(
tls: &mut rustls::Connection,
read_buffer: &mut BytesMut,
) -> Result<Vec<u8>, DecryptEncryptError> {
let mut plain_bytes = Vec::new();
while tls.wants_read() && !read_buffer.is_empty() {
let mut encrypted_bytes = read_buffer.reader();
tls.read_tls(&mut encrypted_bytes)?;
tls.process_new_packets()?;
}
loop {
let mut plain_bytes_chunk = [0; 128];
// We need to handle different cases according to:
// https://docs.rs/rustls/latest/rustls/struct.Reader.html#method.read
match tls.reader().read(&mut plain_bytes_chunk) {
// There are no more bytes to read
Err(err) if err.kind() == ErrorKind::WouldBlock => break,
// The TLS session was closed uncleanly
Err(err) if err.kind() == ErrorKind::UnexpectedEof => {
return Err(DecryptEncryptError::Closed)
}
// We got an unexpected error
Err(err) => return Err(DecryptEncryptError::Io(err)),
// The TLS session was closed cleanly
Ok(0) => return Err(DecryptEncryptError::Closed),
// We read some plaintext bytes
Ok(n) => plain_bytes.extend(&plain_bytes_chunk[0..n]),
};
}
Ok(plain_bytes)
}
fn encrypt(
tls: &mut rustls::Connection,
write_buffer: &mut BytesMut,
plain_bytes: Vec<u8>,
) -> Result<(), DecryptEncryptError> {
if !plain_bytes.is_empty() {
tls.writer().write_all(&plain_bytes)?;
}
while tls.wants_write() {
let mut encrypted_bytes = write_buffer.writer();
tls.write_tls(&mut encrypted_bytes)?;
}
Ok(())
}
#[derive(Debug, Error)]
enum DecryptEncryptError {
#[error("Session was closed")]
Closed,
#[error(transparent)]
Io(#[from] std::io::Error),
#[error(transparent)]
Tls(#[from] rustls::Error),
}
impl<E> From<DecryptEncryptError> for Error<E> {
fn from(value: DecryptEncryptError) -> Self {
match value {
DecryptEncryptError::Closed => Error::Closed,
DecryptEncryptError::Io(err) => Error::Io(err),
DecryptEncryptError::Tls(err) => Error::Tls(err),
}
}
}