image 0.25.8

Imaging library. Provides basic image processing and encoders/decoders for common image formats.
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
//! Decoding and Encoding of TIFF Images
//!
//! TIFF (Tagged Image File Format) is a versatile image format that supports
//! lossless and lossy compression.
//!
//! # Related Links
//! * <http://partners.adobe.com/public/developer/tiff/index.html> - The TIFF specification
use std::io::{self, BufRead, Cursor, Read, Seek, Write};
use std::marker::PhantomData;
use std::mem;

use tiff::decoder::{Decoder, DecodingResult};
use tiff::tags::Tag;

use crate::color::{ColorType, ExtendedColorType};
use crate::error::{
    DecodingError, EncodingError, ImageError, ImageResult, LimitError, LimitErrorKind,
    ParameterError, ParameterErrorKind, UnsupportedError, UnsupportedErrorKind,
};
use crate::metadata::Orientation;
use crate::{utils, ImageDecoder, ImageEncoder, ImageFormat};

/// Decoder for TIFF images.
pub struct TiffDecoder<R>
where
    R: BufRead + Seek,
{
    dimensions: (u32, u32),
    color_type: ColorType,
    original_color_type: ExtendedColorType,

    // We only use an Option here so we can call with_limits on the decoder without moving.
    inner: Option<Decoder<R>>,
}

impl<R> TiffDecoder<R>
where
    R: BufRead + Seek,
{
    /// Create a new `TiffDecoder`.
    pub fn new(r: R) -> Result<TiffDecoder<R>, ImageError> {
        let mut inner = Decoder::new(r).map_err(ImageError::from_tiff_decode)?;

        let dimensions = inner.dimensions().map_err(ImageError::from_tiff_decode)?;
        let tiff_color_type = inner.colortype().map_err(ImageError::from_tiff_decode)?;

        match inner.find_tag_unsigned_vec::<u16>(Tag::SampleFormat) {
            Ok(Some(sample_formats)) => {
                for format in sample_formats {
                    check_sample_format(format, tiff_color_type)?;
                }
            }
            Ok(None) => { /* assume UInt format */ }
            Err(other) => return Err(ImageError::from_tiff_decode(other)),
        }

        let planar_config = inner
            .find_tag(Tag::PlanarConfiguration)
            .map(|res| res.and_then(|r| r.into_u16().ok()).unwrap_or_default())
            .unwrap_or_default();

        // Decode not supported for non Chunky Planar Configuration
        if planar_config > 1 {
            Err(ImageError::Unsupported(
                UnsupportedError::from_format_and_kind(
                    ImageFormat::Tiff.into(),
                    UnsupportedErrorKind::GenericFeature(String::from("PlanarConfiguration = 2")),
                ),
            ))?;
        }

        let color_type = match tiff_color_type {
            tiff::ColorType::Gray(1) => ColorType::L8,
            tiff::ColorType::Gray(8) => ColorType::L8,
            tiff::ColorType::Gray(16) => ColorType::L16,
            tiff::ColorType::GrayA(8) => ColorType::La8,
            tiff::ColorType::GrayA(16) => ColorType::La16,
            tiff::ColorType::RGB(8) => ColorType::Rgb8,
            tiff::ColorType::RGB(16) => ColorType::Rgb16,
            tiff::ColorType::RGBA(8) => ColorType::Rgba8,
            tiff::ColorType::RGBA(16) => ColorType::Rgba16,
            tiff::ColorType::CMYK(8) => ColorType::Rgb8,
            tiff::ColorType::RGB(32) => ColorType::Rgb32F,
            tiff::ColorType::RGBA(32) => ColorType::Rgba32F,

            tiff::ColorType::Palette(n) | tiff::ColorType::Gray(n) => {
                return Err(err_unknown_color_type(n))
            }
            tiff::ColorType::GrayA(n) => return Err(err_unknown_color_type(n.saturating_mul(2))),
            tiff::ColorType::RGB(n) => return Err(err_unknown_color_type(n.saturating_mul(3))),
            tiff::ColorType::YCbCr(n) => return Err(err_unknown_color_type(n.saturating_mul(3))),
            tiff::ColorType::RGBA(n) | tiff::ColorType::CMYK(n) => {
                return Err(err_unknown_color_type(n.saturating_mul(4)))
            }
            tiff::ColorType::Multiband {
                bit_depth,
                num_samples,
            } => {
                return Err(err_unknown_color_type(
                    bit_depth.saturating_mul(num_samples.min(255) as u8),
                ))
            }
            _ => return Err(err_unknown_color_type(0)),
        };

        let original_color_type = match tiff_color_type {
            tiff::ColorType::Gray(1) => ExtendedColorType::L1,
            tiff::ColorType::CMYK(8) => ExtendedColorType::Cmyk8,
            _ => color_type.into(),
        };

        Ok(TiffDecoder {
            dimensions,
            color_type,
            original_color_type,
            inner: Some(inner),
        })
    }

    // The buffer can be larger for CMYK than the RGB output
    fn total_bytes_buffer(&self) -> u64 {
        let dimensions = self.dimensions();
        let total_pixels = u64::from(dimensions.0) * u64::from(dimensions.1);
        let bytes_per_pixel = if self.original_color_type == ExtendedColorType::Cmyk8 {
            16
        } else {
            u64::from(self.color_type().bytes_per_pixel())
        };
        total_pixels.saturating_mul(bytes_per_pixel)
    }
}

fn check_sample_format(sample_format: u16, color_type: tiff::ColorType) -> Result<(), ImageError> {
    use tiff::{tags::SampleFormat, ColorType};
    let num_bits = match color_type {
        ColorType::CMYK(k) => k,
        ColorType::Gray(k) => k,
        ColorType::RGB(k) => k,
        ColorType::RGBA(k) => k,
        ColorType::GrayA(k) => k,
        ColorType::Palette(k) | ColorType::YCbCr(k) => {
            return Err(ImageError::Unsupported(
                UnsupportedError::from_format_and_kind(
                    ImageFormat::Tiff.into(),
                    UnsupportedErrorKind::GenericFeature(format!(
                        "Unhandled TIFF color type {color_type:?} for {k} bits",
                    )),
                ),
            ))
        }
        _ => {
            return Err(ImageError::Unsupported(
                UnsupportedError::from_format_and_kind(
                    ImageFormat::Tiff.into(),
                    UnsupportedErrorKind::GenericFeature(format!(
                        "Unhandled TIFF color type {color_type:?}",
                    )),
                ),
            ))
        }
    };

    match SampleFormat::from_u16(sample_format) {
        Some(SampleFormat::Uint) if num_bits <= 16 => Ok(()),
        Some(SampleFormat::IEEEFP) if num_bits == 32 => Ok(()),
        _ => Err(ImageError::Unsupported(
            UnsupportedError::from_format_and_kind(
                ImageFormat::Tiff.into(),
                UnsupportedErrorKind::GenericFeature(format!(
                    "Unhandled TIFF sample format {sample_format:?} for {num_bits} bits",
                )),
            ),
        )),
    }
}

fn err_unknown_color_type(value: u8) -> ImageError {
    ImageError::Unsupported(UnsupportedError::from_format_and_kind(
        ImageFormat::Tiff.into(),
        UnsupportedErrorKind::Color(ExtendedColorType::Unknown(value)),
    ))
}

impl ImageError {
    fn from_tiff_decode(err: tiff::TiffError) -> ImageError {
        match err {
            tiff::TiffError::IoError(err) => ImageError::IoError(err),
            err @ (tiff::TiffError::FormatError(_)
            | tiff::TiffError::IntSizeError
            | tiff::TiffError::UsageError(_)) => {
                ImageError::Decoding(DecodingError::new(ImageFormat::Tiff.into(), err))
            }
            tiff::TiffError::UnsupportedError(desc) => {
                ImageError::Unsupported(UnsupportedError::from_format_and_kind(
                    ImageFormat::Tiff.into(),
                    UnsupportedErrorKind::GenericFeature(desc.to_string()),
                ))
            }
            tiff::TiffError::LimitsExceeded => {
                ImageError::Limits(LimitError::from_kind(LimitErrorKind::InsufficientMemory))
            }
        }
    }

    fn from_tiff_encode(err: tiff::TiffError) -> ImageError {
        match err {
            tiff::TiffError::IoError(err) => ImageError::IoError(err),
            err @ (tiff::TiffError::FormatError(_)
            | tiff::TiffError::IntSizeError
            | tiff::TiffError::UsageError(_)) => {
                ImageError::Encoding(EncodingError::new(ImageFormat::Tiff.into(), err))
            }
            tiff::TiffError::UnsupportedError(desc) => {
                ImageError::Unsupported(UnsupportedError::from_format_and_kind(
                    ImageFormat::Tiff.into(),
                    UnsupportedErrorKind::GenericFeature(desc.to_string()),
                ))
            }
            tiff::TiffError::LimitsExceeded => {
                ImageError::Limits(LimitError::from_kind(LimitErrorKind::InsufficientMemory))
            }
        }
    }
}

/// Wrapper struct around a `Cursor<Vec<u8>>`
#[allow(dead_code)]
#[deprecated]
pub struct TiffReader<R>(Cursor<Vec<u8>>, PhantomData<R>);
#[allow(deprecated)]
impl<R> Read for TiffReader<R> {
    fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
        self.0.read(buf)
    }

    fn read_to_end(&mut self, buf: &mut Vec<u8>) -> io::Result<usize> {
        if self.0.position() == 0 && buf.is_empty() {
            mem::swap(buf, self.0.get_mut());
            Ok(buf.len())
        } else {
            self.0.read_to_end(buf)
        }
    }
}

impl<R: BufRead + Seek> ImageDecoder for TiffDecoder<R> {
    fn dimensions(&self) -> (u32, u32) {
        self.dimensions
    }

    fn color_type(&self) -> ColorType {
        self.color_type
    }

    fn original_color_type(&self) -> ExtendedColorType {
        self.original_color_type
    }

    fn icc_profile(&mut self) -> ImageResult<Option<Vec<u8>>> {
        if let Some(decoder) = &mut self.inner {
            Ok(decoder.get_tag_u8_vec(Tag::Unknown(34675)).ok())
        } else {
            Ok(None)
        }
    }

    fn orientation(&mut self) -> ImageResult<Orientation> {
        if let Some(decoder) = &mut self.inner {
            Ok(decoder
                .find_tag(Tag::Orientation)
                .map_err(ImageError::from_tiff_decode)?
                .and_then(|v| Orientation::from_exif(v.into_u16().ok()?.min(255) as u8))
                .unwrap_or(Orientation::NoTransforms))
        } else {
            Ok(Orientation::NoTransforms)
        }
    }

    fn set_limits(&mut self, limits: crate::Limits) -> ImageResult<()> {
        limits.check_support(&crate::LimitSupport::default())?;

        let (width, height) = self.dimensions();
        limits.check_dimensions(width, height)?;

        let max_alloc = limits.max_alloc.unwrap_or(u64::MAX);
        let max_intermediate_alloc = max_alloc.saturating_sub(self.total_bytes_buffer());

        let mut tiff_limits: tiff::decoder::Limits = Default::default();
        tiff_limits.decoding_buffer_size =
            usize::try_from(max_alloc - max_intermediate_alloc).unwrap_or(usize::MAX);
        tiff_limits.intermediate_buffer_size =
            usize::try_from(max_intermediate_alloc).unwrap_or(usize::MAX);
        tiff_limits.ifd_value_size = tiff_limits.intermediate_buffer_size;
        self.inner = Some(self.inner.take().unwrap().with_limits(tiff_limits));

        Ok(())
    }

    fn read_image(self, buf: &mut [u8]) -> ImageResult<()> {
        assert_eq!(u64::try_from(buf.len()), Ok(self.total_bytes()));

        match self
            .inner
            .unwrap()
            .read_image()
            .map_err(ImageError::from_tiff_decode)?
        {
            DecodingResult::U8(v) if self.original_color_type == ExtendedColorType::Cmyk8 => {
                let mut out_cur = Cursor::new(buf);
                for cmyk in v.chunks_exact(4) {
                    out_cur.write_all(&cmyk_to_rgb(cmyk))?;
                }
            }
            DecodingResult::U8(v) if self.original_color_type == ExtendedColorType::L1 => {
                let width = self.dimensions.0;
                let row_bytes = width.div_ceil(8);

                for (in_row, out_row) in v
                    .chunks_exact(row_bytes as usize)
                    .zip(buf.chunks_exact_mut(width as usize))
                {
                    out_row.copy_from_slice(&utils::expand_bits(1, width, in_row));
                }
            }
            DecodingResult::U8(v) => {
                buf.copy_from_slice(&v);
            }
            DecodingResult::U16(v) => {
                buf.copy_from_slice(bytemuck::cast_slice(&v));
            }
            DecodingResult::U32(v) => {
                buf.copy_from_slice(bytemuck::cast_slice(&v));
            }
            DecodingResult::U64(v) => {
                buf.copy_from_slice(bytemuck::cast_slice(&v));
            }
            DecodingResult::I8(v) => {
                buf.copy_from_slice(bytemuck::cast_slice(&v));
            }
            DecodingResult::I16(v) => {
                buf.copy_from_slice(bytemuck::cast_slice(&v));
            }
            DecodingResult::I32(v) => {
                buf.copy_from_slice(bytemuck::cast_slice(&v));
            }
            DecodingResult::I64(v) => {
                buf.copy_from_slice(bytemuck::cast_slice(&v));
            }
            DecodingResult::F32(v) => {
                buf.copy_from_slice(bytemuck::cast_slice(&v));
            }
            DecodingResult::F64(v) => {
                buf.copy_from_slice(bytemuck::cast_slice(&v));
            }
            DecodingResult::F16(_) => unreachable!(),
        }
        Ok(())
    }

    fn read_image_boxed(self: Box<Self>, buf: &mut [u8]) -> ImageResult<()> {
        (*self).read_image(buf)
    }
}

/// Encoder for tiff images
pub struct TiffEncoder<W> {
    w: W,
}

fn cmyk_to_rgb(cmyk: &[u8]) -> [u8; 3] {
    let c = f32::from(cmyk[0]);
    let m = f32::from(cmyk[1]);
    let y = f32::from(cmyk[2]);
    let kf = 1. - f32::from(cmyk[3]) / 255.;
    [
        ((255. - c) * kf) as u8,
        ((255. - m) * kf) as u8,
        ((255. - y) * kf) as u8,
    ]
}

/// Convert a slice of sample bytes to its semantic type, being a `Pod`.
fn u8_slice_as_pod<P: bytemuck::Pod>(buf: &[u8]) -> ImageResult<std::borrow::Cow<'_, [P]>> {
    bytemuck::try_cast_slice(buf)
        .map(std::borrow::Cow::Borrowed)
        .or_else(|err| {
            match err {
                bytemuck::PodCastError::TargetAlignmentGreaterAndInputNotAligned => {
                    // If the buffer is not aligned for a native slice, copy the buffer into a Vec,
                    // aligning it in the process. This is only done if the element count can be
                    // represented exactly.
                    let vec = bytemuck::allocation::pod_collect_to_vec(buf);
                    Ok(std::borrow::Cow::Owned(vec))
                }
                /* only expecting: bytemuck::PodCastError::OutputSliceWouldHaveSlop */
                _ => {
                    // `bytemuck::PodCastError` of bytemuck-1.2.0 does not implement `Error` and
                    // `Display` trait.
                    // See <https://github.com/Lokathor/bytemuck/issues/22>.
                    Err(ImageError::Parameter(ParameterError::from_kind(
                        ParameterErrorKind::Generic(format!(
                            "Casting samples to their representation failed: {err:?}",
                        )),
                    )))
                }
            }
        })
}

impl<W: Write + Seek> TiffEncoder<W> {
    /// Create a new encoder that writes its output to `w`
    pub fn new(w: W) -> TiffEncoder<W> {
        TiffEncoder { w }
    }

    /// Encodes the image `image` that has dimensions `width` and `height` and `ColorType` `c`.
    ///
    /// 16-bit types assume the buffer is native endian.
    ///
    /// # Panics
    ///
    /// Panics if `width * height * color_type.bytes_per_pixel() != data.len()`.
    #[track_caller]
    pub fn encode(
        self,
        buf: &[u8],
        width: u32,
        height: u32,
        color_type: ExtendedColorType,
    ) -> ImageResult<()> {
        use tiff::encoder::colortype::{
            Gray16, Gray8, RGB32Float, RGBA32Float, RGB16, RGB8, RGBA16, RGBA8,
        };
        let expected_buffer_len = color_type.buffer_size(width, height);
        assert_eq!(
            expected_buffer_len,
            buf.len() as u64,
            "Invalid buffer length: expected {expected_buffer_len} got {} for {width}x{height} image",
            buf.len(),
        );
        let mut encoder =
            tiff::encoder::TiffEncoder::new(self.w).map_err(ImageError::from_tiff_encode)?;
        match color_type {
            ExtendedColorType::L8 => encoder.write_image::<Gray8>(width, height, buf),
            ExtendedColorType::Rgb8 => encoder.write_image::<RGB8>(width, height, buf),
            ExtendedColorType::Rgba8 => encoder.write_image::<RGBA8>(width, height, buf),
            ExtendedColorType::L16 => {
                encoder.write_image::<Gray16>(width, height, u8_slice_as_pod::<u16>(buf)?.as_ref())
            }
            ExtendedColorType::Rgb16 => {
                encoder.write_image::<RGB16>(width, height, u8_slice_as_pod::<u16>(buf)?.as_ref())
            }
            ExtendedColorType::Rgba16 => {
                encoder.write_image::<RGBA16>(width, height, u8_slice_as_pod::<u16>(buf)?.as_ref())
            }
            ExtendedColorType::Rgb32F => encoder.write_image::<RGB32Float>(
                width,
                height,
                u8_slice_as_pod::<f32>(buf)?.as_ref(),
            ),
            ExtendedColorType::Rgba32F => encoder.write_image::<RGBA32Float>(
                width,
                height,
                u8_slice_as_pod::<f32>(buf)?.as_ref(),
            ),
            _ => {
                return Err(ImageError::Unsupported(
                    UnsupportedError::from_format_and_kind(
                        ImageFormat::Tiff.into(),
                        UnsupportedErrorKind::Color(color_type),
                    ),
                ))
            }
        }
        .map_err(ImageError::from_tiff_encode)?;

        Ok(())
    }
}

impl<W: Write + Seek> ImageEncoder for TiffEncoder<W> {
    #[track_caller]
    fn write_image(
        self,
        buf: &[u8],
        width: u32,
        height: u32,
        color_type: ExtendedColorType,
    ) -> ImageResult<()> {
        self.encode(buf, width, height, color_type)
    }
}