1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
#![crate_name = "image_compare"]
#![warn(missing_docs)]
#![warn(unused_qualifications)]
#![deny(deprecated)]
mod histogram;
mod squared_error;
mod ssim;
mod utils;
#[doc(hidden)]
pub mod prelude {
pub use image::{GrayImage, ImageBuffer, Luma, Rgb, RgbImage};
use thiserror::Error;
pub enum Algorithm {
RootMeanSquared,
MSSIMSimple,
}
#[derive(Error, Debug)]
pub enum CompareError {
#[error("The dimensions of the input images are not identical")]
DimensionsDiffer,
#[error("Comparison calculation failed: {0}")]
CalculationFailed(String),
}
pub type GraySimilarityImage = ImageBuffer<Luma<f32>, Vec<f32>>;
pub type RGBSimilarityImage = ImageBuffer<Rgb<f32>, Vec<f32>>;
#[derive(Debug)]
pub struct Similarity<I> {
pub image: I,
pub score: f64,
}
pub type GraySimilarity = Similarity<GraySimilarityImage>;
pub type RGBSimilarity = Similarity<RGBSimilarityImage>;
pub trait ToGrayScale {
fn to_grayscale(&self) -> GrayImage;
}
impl ToGrayScale for GraySimilarityImage {
fn to_grayscale(&self) -> GrayImage {
let mut img_gray = GrayImage::new(self.width(), self.height());
for row in 0..self.height() {
for col in 0..self.width() {
let new_val = self.get_pixel(col, row)[0].clamp(0., 1.) * 255.;
img_gray.put_pixel(col, row, Luma([new_val as u8]));
}
}
img_gray
}
}
pub trait ToColorMap {
fn to_color_map(&self) -> RgbImage;
}
impl ToColorMap for RGBSimilarityImage {
fn to_color_map(&self) -> RgbImage {
let mut img_rgb = RgbImage::new(self.width(), self.height());
for row in 0..self.height() {
for col in 0..self.width() {
let pixel = self.get_pixel(col, row);
let mut new_pixel = [0u8; 3];
for channel in 0..3 {
new_pixel[channel] = (pixel[channel].clamp(0., 1.) * 255.) as u8;
}
img_rgb.put_pixel(col, row, Rgb(new_pixel));
}
}
img_rgb
}
}
}
#[doc(inline)]
pub use histogram::Metric;
#[doc(inline)]
pub use prelude::Algorithm;
#[doc(inline)]
pub use prelude::CompareError;
#[doc(inline)]
pub use prelude::GraySimilarity;
#[doc(inline)]
pub use prelude::GraySimilarityImage;
#[doc(inline)]
pub use prelude::RGBSimilarity;
#[doc(inline)]
pub use prelude::RGBSimilarityImage;
pub use prelude::ToColorMap;
pub use prelude::ToGrayScale;
use prelude::*;
use utils::Decompose;
pub fn gray_similarity_structure(
algorithm: &Algorithm,
first: &GrayImage,
second: &GrayImage,
) -> Result<GraySimilarity, CompareError> {
if first.dimensions() != second.dimensions() {
return Err(CompareError::DimensionsDiffer);
}
match algorithm {
Algorithm::RootMeanSquared => squared_error::root_mean_squared_error_simple(first, second),
Algorithm::MSSIMSimple => ssim::ssim_simple(first, second),
}
}
pub fn rgb_similarity_structure(
algorithm: &Algorithm,
first: &RgbImage,
second: &RgbImage,
) -> Result<RGBSimilarity, CompareError> {
if first.dimensions() != second.dimensions() {
return Err(CompareError::DimensionsDiffer);
}
let first_channels = first.split_channels();
let second_channels = second.split_channels();
let mut results = Vec::new();
for channel in 0..3 {
results.push(gray_similarity_structure(
algorithm,
&first_channels[channel],
&second_channels[channel],
)?);
}
let input = results.iter().map(|r| &r.image).collect::<Vec<_>>();
let image = utils::merge_similarity_channels(&input.try_into().unwrap());
let score = results.iter().map(|r| r.score).fold(1., f64::min);
Ok(RGBSimilarity { image, score })
}
pub fn gray_similarity_histogram(
metric: Metric,
first: &GrayImage,
second: &GrayImage,
) -> Result<f64, CompareError> {
if first.dimensions() != second.dimensions() {
return Err(CompareError::DimensionsDiffer);
}
histogram::img_compare(first, second, metric)
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn dimensions_differ_test_gray_structure() {
let first = GrayImage::new(1, 1);
let second = GrayImage::new(2, 2);
let result = gray_similarity_structure(&Algorithm::RootMeanSquared, &first, &second);
assert!(result.is_err());
}
#[test]
fn dimensions_differ_test_rgb_structure() {
let first = RgbImage::new(1, 1);
let second = RgbImage::new(2, 2);
let result = rgb_similarity_structure(&Algorithm::RootMeanSquared, &first, &second);
assert!(result.is_err());
}
#[test]
fn dimensions_differ_test_gray_histos() {
let first = GrayImage::new(1, 1);
let second = GrayImage::new(2, 2);
let result = gray_similarity_histogram(Metric::Hellinger, &first, &second);
assert!(result.is_err());
}
}