[−][src]Struct iced_x86::OpCodeInfo
Opcode info, returned by Code::op_code()
and Instruction::op_code()
Implementations
impl OpCodeInfo
[src]
#[must_use]pub fn code(&self) -> Code
[src]
Gets the code
Examples
use iced_x86::*; let op_code = Code::EVEX_Vmovapd_ymm_k1z_ymmm256.op_code(); assert_eq!(Code::EVEX_Vmovapd_ymm_k1z_ymmm256, op_code.code());
#[must_use]pub fn mnemonic(&self) -> Mnemonic
[src]
Gets the mnemonic
Examples
use iced_x86::*; let op_code = Code::EVEX_Vmovapd_ymm_k1z_ymmm256.op_code(); assert_eq!(Mnemonic::Vmovapd, op_code.mnemonic());
#[must_use]pub fn encoding(&self) -> EncodingKind
[src]
Gets the encoding
Examples
use iced_x86::*; let op_code = Code::EVEX_Vmovapd_ymm_k1z_ymmm256.op_code(); assert_eq!(EncodingKind::EVEX, op_code.encoding());
#[must_use]pub fn is_instruction(&self) -> bool
[src]
true
if it's an instruction, false
if it's eg. Code::INVALID
, db
, dw
, dd
, dq
Examples
use iced_x86::*; assert!(Code::EVEX_Vmovapd_ymm_k1z_ymmm256.op_code().is_instruction()); assert!(!Code::INVALID.op_code().is_instruction()); assert!(!Code::DeclareByte.op_code().is_instruction());
#[must_use]pub fn mode16(&self) -> bool
[src]
true
if it's an instruction available in 16-bit mode
#[must_use]pub fn mode32(&self) -> bool
[src]
true
if it's an instruction available in 32-bit mode
#[must_use]pub fn mode64(&self) -> bool
[src]
true
if it's an instruction available in 64-bit mode
#[must_use]pub fn fwait(&self) -> bool
[src]
true
if an FWAIT
(9B
) instruction is added before the instruction
#[must_use]pub fn operand_size(&self) -> u32
[src]
(Legacy encoding) Gets the required operand size (16,32,64) or 0
#[must_use]pub fn address_size(&self) -> u32
[src]
(Legacy encoding) Gets the required address size (16,32,64) or 0
#[must_use]pub fn l(&self) -> u32
[src]
(VEX/XOP/EVEX) L
/ L'L
value or default value if is_lig()
is true
#[must_use]pub fn w(&self) -> u32
[src]
(VEX/XOP/EVEX) W
value or default value if is_wig()
or is_wig32()
is true
#[must_use]pub fn is_lig(&self) -> bool
[src]
(VEX/XOP/EVEX) true
if the L
/ L'L
fields are ignored.
EVEX: if reg-only ops and {er}
(EVEX.b
is set), L'L
is the rounding control and not ignored.
#[must_use]pub fn is_wig(&self) -> bool
[src]
(VEX/XOP/EVEX) true
if the W
field is ignored in 16/32/64-bit modes
#[must_use]pub fn is_wig32(&self) -> bool
[src]
(VEX/XOP/EVEX) true
if the W
field is ignored in 16/32-bit modes (but not 64-bit mode)
#[must_use]pub fn tuple_type(&self) -> TupleType
[src]
(EVEX) Gets the tuple type
#[must_use]pub fn memory_size(&self) -> MemorySize
[src]
If it has a memory operand, gets the MemorySize
(non-broadcast memory type)
#[must_use]pub fn broadcast_memory_size(&self) -> MemorySize
[src]
If it has a memory operand, gets the MemorySize
(broadcast memory type)
#[must_use]pub fn can_broadcast(&self) -> bool
[src]
(EVEX) true
if the instruction supports broadcasting (EVEX.b
bit) (if it has a memory operand)
#[must_use]pub fn can_use_rounding_control(&self) -> bool
[src]
(EVEX) true
if the instruction supports rounding control
#[must_use]pub fn can_suppress_all_exceptions(&self) -> bool
[src]
(EVEX) true
if the instruction supports suppress all exceptions
#[must_use]pub fn can_use_op_mask_register(&self) -> bool
[src]
(EVEX) true
if an op mask register can be used
#[must_use]pub fn require_op_mask_register(&self) -> bool
[src]
(EVEX) true
if a non-zero op mask register must be used
#[must_use]pub fn require_non_zero_op_mask_register(&self) -> bool
[src]
Use require_op_mask_register() instead
(EVEX) true
if a non-zero op mask register must be used
#[must_use]pub fn can_use_zeroing_masking(&self) -> bool
[src]
(EVEX) true
if the instruction supports zeroing masking (if one of the op mask registers K1
-K7
is used and destination operand is not a memory operand)
#[must_use]pub fn can_use_lock_prefix(&self) -> bool
[src]
true
if the LOCK
(F0
) prefix can be used
#[must_use]pub fn can_use_xacquire_prefix(&self) -> bool
[src]
true
if the XACQUIRE
(F2
) prefix can be used
#[must_use]pub fn can_use_xrelease_prefix(&self) -> bool
[src]
true
if the XRELEASE
(F3
) prefix can be used
#[must_use]pub fn can_use_rep_prefix(&self) -> bool
[src]
true
if the REP
/ REPE
(F3
) prefixes can be used
#[must_use]pub fn can_use_repne_prefix(&self) -> bool
[src]
true
if the REPNE
(F2
) prefix can be used
#[must_use]pub fn can_use_bnd_prefix(&self) -> bool
[src]
true
if the BND
(F2
) prefix can be used
#[must_use]pub fn can_use_hint_taken_prefix(&self) -> bool
[src]
true
if the HINT-TAKEN
(3E
) and HINT-NOT-TAKEN
(2E
) prefixes can be used
#[must_use]pub fn can_use_notrack_prefix(&self) -> bool
[src]
true
if the NOTRACK
(3E
) prefix can be used
#[must_use]pub fn ignores_rounding_control(&self) -> bool
[src]
true
if rounding control is ignored (#UD is not generated)
#[must_use]pub fn amd_lock_reg_bit(&self) -> bool
[src]
true
if the LOCK
prefix can be used as an extra register bit (bit 3) to access registers 8-15 without a REX
prefix (eg. in 32-bit mode)
#[must_use]pub fn default_op_size64(&self) -> bool
[src]
true
if the default operand size is 64 in 64-bit mode. A 66
prefix can switch to 16-bit operand size.
#[must_use]pub fn force_op_size64(&self) -> bool
[src]
true
if the operand size is always 64 in 64-bit mode. A 66
prefix is ignored.
#[must_use]pub fn intel_force_op_size64(&self) -> bool
[src]
true
if the Intel decoder forces 64-bit operand size. A 66
prefix is ignored.
#[must_use]pub fn must_be_cpl0(&self) -> bool
[src]
true
if it can only be executed when CPL=0
#[must_use]pub fn cpl0(&self) -> bool
[src]
true
if it can be executed when CPL=0
#[must_use]pub fn cpl1(&self) -> bool
[src]
true
if it can be executed when CPL=1
#[must_use]pub fn cpl2(&self) -> bool
[src]
true
if it can be executed when CPL=2
#[must_use]pub fn cpl3(&self) -> bool
[src]
true
if it can be executed when CPL=3
#[must_use]pub fn is_input_output(&self) -> bool
[src]
true
if the instruction accesses the I/O address space (eg. IN
, OUT
, INS
, OUTS
)
#[must_use]pub fn is_nop(&self) -> bool
[src]
true
if it's one of the many nop instructions (does not include FPU nop instructions, eg. FNOP
)
#[must_use]pub fn is_reserved_nop(&self) -> bool
[src]
true
if it's one of the many reserved nop instructions (eg. 0F0D
, 0F18-0F1F
)
#[must_use]pub fn is_serializing_intel(&self) -> bool
[src]
true
if it's a serializing instruction (Intel CPUs)
#[must_use]pub fn is_serializing_amd(&self) -> bool
[src]
true
if it's a serializing instruction (AMD CPUs)
#[must_use]pub fn may_require_cpl0(&self) -> bool
[src]
true
if the instruction requires either CPL=0 or CPL<=3 depending on some CPU option (eg. CR4.TSD
, CR4.PCE
, CR4.UMIP
)
#[must_use]pub fn is_cet_tracked(&self) -> bool
[src]
true
if it's a tracked JMP
/CALL
indirect instruction (CET)
#[must_use]pub fn is_non_temporal(&self) -> bool
[src]
true
if it's a non-temporal hint memory access (eg. MOVNTDQ
)
#[must_use]pub fn is_fpu_no_wait(&self) -> bool
[src]
true
if it's a no-wait FPU instruction, eg. FNINIT
#[must_use]pub fn ignores_mod_bits(&self) -> bool
[src]
true
if the mod bits are ignored and it's assumed modrm[7:6] == 11b
#[must_use]pub fn no66(&self) -> bool
[src]
true
if the 66
prefix is not allowed (it will #UD)
#[must_use]pub fn nfx(&self) -> bool
[src]
true
if the F2
/F3
prefixes aren't allowed
#[must_use]pub fn requires_unique_reg_nums(&self) -> bool
[src]
true
if the index reg's reg-num (vsib op) (if any) and register ops' reg-nums must be unique,
eg. MNEMONIC XMM1,YMM1,[RAX+ZMM1*2]
is invalid. Registers = XMM
/YMM
/ZMM
/TMM
.
#[must_use]pub fn is_privileged(&self) -> bool
[src]
true
if it's a privileged instruction (all CPL=0 instructions (except VMCALL
) and IOPL instructions IN
, INS
, OUT
, OUTS
, CLI
, STI
)
#[must_use]pub fn is_save_restore(&self) -> bool
[src]
true
if it reads/writes too many registers
#[must_use]pub fn is_stack_instruction(&self) -> bool
[src]
true
if it's an instruction that implicitly uses the stack register, eg. CALL
, POP
, etc
#[must_use]pub fn ignores_segment(&self) -> bool
[src]
true
if the instruction doesn't read the segment register if it uses a memory operand
#[must_use]pub fn is_op_mask_read_write(&self) -> bool
[src]
true
if the op mask register is read and written (instead of just read). This also implies that it can't be K0
.
#[must_use]pub fn real_mode(&self) -> bool
[src]
true
if it can be executed in real mode
#[must_use]pub fn protected_mode(&self) -> bool
[src]
true
if it can be executed in protected mode
#[must_use]pub fn virtual8086_mode(&self) -> bool
[src]
true
if it can be executed in virtual 8086 mode
#[must_use]pub fn compatibility_mode(&self) -> bool
[src]
true
if it can be executed in compatibility mode
#[must_use]pub fn long_mode(&self) -> bool
[src]
true
if it can be executed in 64-bit mode
#[must_use]pub fn use_outside_smm(&self) -> bool
[src]
true
if it can be used outside SMM
#[must_use]pub fn use_in_smm(&self) -> bool
[src]
true
if it can be used in SMM
#[must_use]pub fn use_outside_enclave_sgx(&self) -> bool
[src]
true
if it can be used outside an enclave (SGX)
#[must_use]pub fn use_in_enclave_sgx1(&self) -> bool
[src]
true
if it can be used inside an enclave (SGX1)
#[must_use]pub fn use_in_enclave_sgx2(&self) -> bool
[src]
true
if it can be used inside an enclave (SGX2)
#[must_use]pub fn use_outside_vmx_op(&self) -> bool
[src]
true
if it can be used outside VMX operation
#[must_use]pub fn use_in_vmx_root_op(&self) -> bool
[src]
true
if it can be used in VMX root operation
#[must_use]pub fn use_in_vmx_non_root_op(&self) -> bool
[src]
true
if it can be used in VMX non-root operation
#[must_use]pub fn use_outside_seam(&self) -> bool
[src]
true
if it can be used outside SEAM
#[must_use]pub fn use_in_seam(&self) -> bool
[src]
true
if it can be used in SEAM
#[must_use]pub fn tdx_non_root_gen_ud(&self) -> bool
[src]
true
if #UD is generated in TDX non-root operation
#[must_use]pub fn tdx_non_root_gen_ve(&self) -> bool
[src]
true
if #VE is generated in TDX non-root operation
#[must_use]pub fn tdx_non_root_may_gen_ex(&self) -> bool
[src]
true
if an exception (eg. #GP(0), #VE) may be generated in TDX non-root operation
#[must_use]pub fn intel_vm_exit(&self) -> bool
[src]
(Intel VMX) true
if it causes a VM exit in VMX non-root operation
#[must_use]pub fn intel_may_vm_exit(&self) -> bool
[src]
(Intel VMX) true
if it may cause a VM exit in VMX non-root operation
#[must_use]pub fn intel_smm_vm_exit(&self) -> bool
[src]
(Intel VMX) true
if it causes an SMM VM exit in VMX root operation (if dual-monitor treatment is activated)
#[must_use]pub fn amd_vm_exit(&self) -> bool
[src]
(AMD SVM) true
if it causes a #VMEXIT in guest mode
#[must_use]pub fn amd_may_vm_exit(&self) -> bool
[src]
(AMD SVM) true
if it may cause a #VMEXIT in guest mode
#[must_use]pub fn tsx_abort(&self) -> bool
[src]
true
if it causes a TSX abort inside a TSX transaction
#[must_use]pub fn tsx_impl_abort(&self) -> bool
[src]
true
if it causes a TSX abort inside a TSX transaction depending on the implementation
#[must_use]pub fn tsx_may_abort(&self) -> bool
[src]
true
if it may cause a TSX abort inside a TSX transaction depending on some condition
#[must_use]pub fn intel_decoder16(&self) -> bool
[src]
true
if it's decoded by iced's 16-bit Intel decoder
#[must_use]pub fn intel_decoder32(&self) -> bool
[src]
true
if it's decoded by iced's 32-bit Intel decoder
#[must_use]pub fn intel_decoder64(&self) -> bool
[src]
true
if it's decoded by iced's 64-bit Intel decoder
#[must_use]pub fn amd_decoder16(&self) -> bool
[src]
true
if it's decoded by iced's 16-bit AMD decoder
#[must_use]pub fn amd_decoder32(&self) -> bool
[src]
true
if it's decoded by iced's 32-bit AMD decoder
#[must_use]pub fn amd_decoder64(&self) -> bool
[src]
true
if it's decoded by iced's 64-bit AMD decoder
#[must_use]pub fn decoder_option(&self) -> u32
[src]
Gets the decoder option that's needed to decode the instruction or DecoderOptions::NONE
.
The return value is a DecoderOptions
value.
#[must_use]pub fn table(&self) -> OpCodeTableKind
[src]
Gets the opcode table
#[must_use]pub fn mandatory_prefix(&self) -> MandatoryPrefix
[src]
Gets the mandatory prefix
#[must_use]pub fn op_code(&self) -> u32
[src]
Gets the opcode byte(s). The low byte(s) of this value is the opcode. The length is in op_code_len()
.
It doesn't include the table value, see table()
.
Examples
use iced_x86::*; assert_eq!(0xDFC0, Code::Ffreep_sti.op_code().op_code()); assert_eq!(0x01D8, Code::Vmrunw.op_code().op_code()); assert_eq!(0x2A, Code::Sub_r8_rm8.op_code().op_code()); assert_eq!(0x2A, Code::Cvtpi2ps_xmm_mmm64.op_code().op_code());
#[must_use]pub fn op_code_len(&self) -> u32
[src]
Gets the length of the opcode bytes (op_code()
). The low bytes is the opcode value.
Examples
use iced_x86::*; assert_eq!(2, Code::Ffreep_sti.op_code().op_code_len()); assert_eq!(2, Code::Vmrunw.op_code().op_code_len()); assert_eq!(1, Code::Sub_r8_rm8.op_code().op_code_len()); assert_eq!(1, Code::Cvtpi2ps_xmm_mmm64.op_code().op_code_len());
#[must_use]pub fn is_group(&self) -> bool
[src]
true
if it's part of a group
#[must_use]pub fn group_index(&self) -> i32
[src]
Group index (0-7) or -1. If it's 0-7, it's stored in the reg
field of the modrm
byte.
#[must_use]pub fn is_rm_group(&self) -> bool
[src]
true
if it's part of a modrm.rm group
#[must_use]pub fn rm_group_index(&self) -> i32
[src]
Group index (0-7) or -1. If it's 0-7, it's stored in the rm
field of the modrm
byte.
#[must_use]pub fn op_count(&self) -> u32
[src]
Gets the number of operands
#[must_use]pub fn op0_kind(&self) -> OpCodeOperandKind
[src]
Gets operand #0's opkind
#[must_use]pub fn op1_kind(&self) -> OpCodeOperandKind
[src]
Gets operand #1's opkind
#[must_use]pub fn op2_kind(&self) -> OpCodeOperandKind
[src]
Gets operand #2's opkind
#[must_use]pub fn op3_kind(&self) -> OpCodeOperandKind
[src]
Gets operand #3's opkind
#[must_use]pub fn op4_kind(&self) -> OpCodeOperandKind
[src]
Gets operand #4's opkind
#[must_use]pub fn op_kind(&self, operand: u32) -> OpCodeOperandKind
[src]
#[must_use]pub fn op_kinds(&self) -> &[OpCodeOperandKind]
[src]
Gets all operand kinds
#[must_use]pub fn is_available_in_mode(&self, bitness: u32) -> bool
[src]
Checks if the instruction is available in 16-bit mode, 32-bit mode or 64-bit mode
Arguments
bitness
: 16, 32 or 64
#[must_use]pub fn op_code_string(&self) -> &str
[src]
Gets the opcode string, eg. VEX.128.66.0F38.W0 78 /r
, see also instruction_string()
Examples
use iced_x86::*; let op_code = Code::EVEX_Vmovapd_ymm_k1z_ymmm256.op_code(); assert_eq!("EVEX.256.66.0F.W1 28 /r", op_code.op_code_string());
#[must_use]pub fn instruction_string(&self) -> &str
[src]
Gets the instruction string, eg. VPBROADCASTB xmm1, xmm2/m8
, see also op_code_string()
Examples
use iced_x86::*; let op_code = Code::EVEX_Vmovapd_ymm_k1z_ymmm256.op_code(); assert_eq!("VMOVAPD ymm1 {k1}{z}, ymm2/m256", op_code.instruction_string());
Trait Implementations
impl Clone for OpCodeInfo
[src]
pub fn clone(&self) -> OpCodeInfo
[src]
pub fn clone_from(&mut self, source: &Self)
1.0.0[src]
impl Debug for OpCodeInfo
[src]
impl Display for OpCodeInfo
[src]
Auto Trait Implementations
impl RefUnwindSafe for OpCodeInfo
impl Send for OpCodeInfo
impl Sync for OpCodeInfo
impl Unpin for OpCodeInfo
impl UnwindSafe for OpCodeInfo
Blanket Implementations
impl<T> Any for T where
T: 'static + ?Sized,
[src]
T: 'static + ?Sized,
impl<T> Borrow<T> for T where
T: ?Sized,
[src]
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
[src]
T: ?Sized,
pub fn borrow_mut(&mut self) -> &mut T
[src]
impl<T> From<T> for T
[src]
impl<T, U> Into<U> for T where
U: From<T>,
[src]
U: From<T>,
impl<T> ToOwned for T where
T: Clone,
[src]
T: Clone,
type Owned = T
The resulting type after obtaining ownership.
pub fn to_owned(&self) -> T
[src]
pub fn clone_into(&self, target: &mut T)
[src]
impl<T> ToString for T where
T: Display + ?Sized,
[src]
T: Display + ?Sized,
impl<T, U> TryFrom<U> for T where
U: Into<T>,
[src]
U: Into<T>,
type Error = Infallible
The type returned in the event of a conversion error.
pub fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>
[src]
impl<T, U> TryInto<U> for T where
U: TryFrom<T>,
[src]
U: TryFrom<T>,