#![warn(missing_docs)]
mod draw_functions;
mod fonts;
use self::fonts::GlyphRenderer;
use crate::api::Window;
use crate::graphics::rendering_metrics_collector::{RefreshMode, RenderingMetricsCollector};
use crate::graphics::{IntRect, PixelFormat, SharedImageBuffer, SharedPixelBuffer};
use crate::item_rendering::ItemRenderer;
use crate::items::{ImageFit, ItemRc, TextOverflow};
use crate::lengths::{
LogicalLength, LogicalPoint, LogicalRect, LogicalSize, LogicalVector, PhysicalPx, PointLengths,
RectLengths, ScaleFactor, SizeLengths,
};
use crate::renderer::{Renderer, RendererSealed};
use crate::textlayout::{AbstractFont, FontMetrics, TextParagraphLayout};
use crate::window::{WindowAdapter, WindowInner};
use crate::{Brush, Color, Coord, ImageInner, StaticTextures};
use alloc::rc::{Rc, Weak};
use alloc::{vec, vec::Vec};
use core::cell::{Cell, RefCell};
use core::pin::Pin;
use euclid::num::Zero;
use euclid::Length;
#[allow(unused)]
use num_traits::Float;
use num_traits::NumCast;
pub use draw_functions::{PremultipliedRgbaColor, Rgb565Pixel, TargetPixel};
type PhysicalLength = euclid::Length<i16, PhysicalPx>;
type PhysicalRect = euclid::Rect<i16, PhysicalPx>;
type PhysicalSize = euclid::Size2D<i16, PhysicalPx>;
type PhysicalPoint = euclid::Point2D<i16, PhysicalPx>;
type DirtyRegion = PhysicalRect;
#[derive(PartialEq, Eq, Debug, Clone, Default, Copy)]
pub enum RepaintBufferType {
#[default]
NewBuffer,
ReusedBuffer,
SwappedBuffers,
}
#[allow(unused)]
mod internal {
use super::*;
#[non_exhaustive]
#[derive(Default, Copy, Clone, Eq, PartialEq, Debug)]
pub enum WindowRotation {
#[default]
NoRotation,
Rotate90,
Rotate180,
Rotate270,
}
}
#[cfg(feature = "software-renderer-rotation")]
pub use internal::WindowRotation;
#[cfg(not(feature = "software-renderer-rotation"))]
use internal::WindowRotation;
impl WindowRotation {
fn is_transpose(self) -> bool {
matches!(self, Self::Rotate90 | Self::Rotate270)
}
fn mirror_width(self) -> bool {
matches!(self, Self::Rotate90 | Self::Rotate180)
}
fn mirror_height(self) -> bool {
matches!(self, Self::Rotate270 | Self::Rotate180)
}
fn angle(self) -> f32 {
match self {
WindowRotation::NoRotation => 0.,
WindowRotation::Rotate90 => 90.,
WindowRotation::Rotate180 => 180.,
WindowRotation::Rotate270 => 270.,
}
}
}
#[derive(Copy, Clone)]
struct RotationInfo {
orientation: WindowRotation,
screen_size: PhysicalSize,
}
trait Transform {
#[must_use]
fn transformed(self, info: RotationInfo) -> Self;
}
impl<T: Copy + NumCast + core::ops::Sub<Output = T>> Transform for euclid::Point2D<T, PhysicalPx> {
fn transformed(mut self, info: RotationInfo) -> Self {
if info.orientation.mirror_width() {
self.x = T::from(info.screen_size.width).unwrap() - self.x - T::from(1).unwrap()
}
if info.orientation.mirror_height() {
self.y = T::from(info.screen_size.height).unwrap() - self.y - T::from(1).unwrap()
}
if info.orientation.is_transpose() {
core::mem::swap(&mut self.x, &mut self.y);
}
self
}
}
impl<T: Copy> Transform for euclid::Size2D<T, PhysicalPx> {
fn transformed(mut self, info: RotationInfo) -> Self {
if info.orientation.is_transpose() {
core::mem::swap(&mut self.width, &mut self.height);
}
self
}
}
impl<T: Copy + NumCast + core::ops::Sub<Output = T>> Transform for euclid::Rect<T, PhysicalPx> {
fn transformed(self, info: RotationInfo) -> Self {
let one = T::from(1).unwrap();
let mut origin = self.origin.transformed(info);
let size = self.size.transformed(info);
if info.orientation.mirror_width() {
origin.y = origin.y - (size.height - one);
}
if info.orientation.mirror_height() {
origin.x = origin.x - (size.width - one);
}
Self::new(origin, size)
}
}
pub trait LineBufferProvider {
type TargetPixel: TargetPixel;
fn process_line(
&mut self,
line: usize,
range: core::ops::Range<usize>,
render_fn: impl FnOnce(&mut [Self::TargetPixel]),
);
}
#[derive(Clone, Debug, Default)]
pub struct PhysicalRegion(PhysicalRect);
impl PhysicalRegion {
pub fn bounding_box_size(&self) -> crate::api::PhysicalSize {
crate::api::PhysicalSize { width: self.0.width() as _, height: self.0.height() as _ }
}
pub fn bounding_box_origin(&self) -> crate::api::PhysicalPosition {
crate::api::PhysicalPosition { x: self.0.origin.x as _, y: self.0.origin.y as _ }
}
}
pub struct SoftwareRenderer {
partial_cache: RefCell<crate::item_rendering::PartialRenderingCache>,
repaint_buffer_type: Cell<RepaintBufferType>,
force_dirty: Cell<crate::item_rendering::DirtyRegion>,
force_screen_refresh: Cell<bool>,
prev_frame_dirty: Cell<DirtyRegion>,
maybe_window_adapter: RefCell<Option<Weak<dyn crate::window::WindowAdapter>>>,
rotation: Cell<WindowRotation>,
rendering_metrics_collector: Option<Rc<RenderingMetricsCollector>>,
}
impl Default for SoftwareRenderer {
fn default() -> Self {
Self {
partial_cache: Default::default(),
repaint_buffer_type: Default::default(),
force_dirty: Default::default(),
force_screen_refresh: Default::default(),
prev_frame_dirty: Default::default(),
maybe_window_adapter: Default::default(),
rotation: Default::default(),
rendering_metrics_collector: RenderingMetricsCollector::new("software"),
}
}
}
impl SoftwareRenderer {
pub fn new() -> Self {
Default::default()
}
pub fn new_with_repaint_buffer_type(repaint_buffer_type: RepaintBufferType) -> Self {
Self { repaint_buffer_type: repaint_buffer_type.into(), ..Default::default() }
}
pub fn set_repaint_buffer_type(&self, repaint_buffer_type: RepaintBufferType) {
if self.repaint_buffer_type.replace(repaint_buffer_type) != repaint_buffer_type {
self.partial_cache.borrow_mut().clear();
}
}
pub fn repaint_buffer_type(&self) -> RepaintBufferType {
self.repaint_buffer_type.get()
}
#[cfg(feature = "software-renderer-rotation")]
pub fn set_window_rotation(&self, rotation: WindowRotation) {
self.rotation.set(rotation)
}
#[cfg(feature = "software-renderer-rotation")]
pub fn window_rotation(&self) -> WindowRotation {
self.rotation.get()
}
fn apply_dirty_region(
&self,
mut dirty_region: DirtyRegion,
screen_size: PhysicalSize,
) -> DirtyRegion {
let screen_region = PhysicalRect { origin: euclid::point2(0, 0), size: screen_size };
if self.force_screen_refresh.take() {
dirty_region = screen_region;
}
match self.repaint_buffer_type() {
RepaintBufferType::NewBuffer => {
PhysicalRect { origin: euclid::point2(0, 0), size: screen_size }
}
RepaintBufferType::ReusedBuffer => dirty_region,
RepaintBufferType::SwappedBuffers => {
dirty_region.union(&self.prev_frame_dirty.replace(dirty_region))
}
}
.intersection(&screen_region)
.unwrap_or_default()
}
pub fn render(&self, buffer: &mut [impl TargetPixel], pixel_stride: usize) -> PhysicalRegion {
let Some(window) = self.maybe_window_adapter.borrow().as_ref().and_then(|w| w.upgrade())
else {
return Default::default();
};
let window_inner = WindowInner::from_pub(window.window());
let factor = ScaleFactor::new(window_inner.scale_factor());
let rotation = self.rotation.get();
let (size, background) = if let Some(window_item) =
window_inner.window_item().as_ref().map(|item| item.as_pin_ref())
{
(
(LogicalSize::from_lengths(window_item.width(), window_item.height()).cast()
* factor)
.cast(),
window_item.background(),
)
} else if rotation.is_transpose() {
(euclid::size2((buffer.len() / pixel_stride) as _, pixel_stride as _), Brush::default())
} else {
(euclid::size2(pixel_stride as _, (buffer.len() / pixel_stride) as _), Brush::default())
};
if size.is_empty() {
return Default::default();
}
assert!(
if rotation.is_transpose() {
pixel_stride >= size.height as usize && buffer.len() >= (size.width as usize * pixel_stride + size.height as usize) - pixel_stride
} else {
pixel_stride >= size.width as usize && buffer.len() >= (size.height as usize * pixel_stride + size.width as usize) - pixel_stride
},
"buffer of size {} with stride {pixel_stride} is too small to handle a window of size {size:?}", buffer.len()
);
let buffer_renderer = SceneBuilder::new(
size,
factor,
window_inner,
RenderToBuffer { buffer, stride: pixel_stride },
rotation,
);
let mut renderer = crate::item_rendering::PartialRenderer::new(
&self.partial_cache,
self.force_dirty.take(),
buffer_renderer,
);
window_inner
.draw_contents(|components| {
for (component, origin) in components {
renderer.compute_dirty_regions(component, *origin);
}
let dirty_region = (renderer.dirty_region.to_rect().cast() * factor)
.round_out()
.intersection(&euclid::rect(0., 0., i16::MAX as f32, i16::MAX as f32))
.unwrap_or_default()
.cast();
let to_draw = self.apply_dirty_region(dirty_region, size);
renderer.combine_clip(
(to_draw.cast() / factor).cast(),
LogicalLength::zero(),
LogicalLength::zero(),
);
let mut bg = TargetPixel::background();
TargetPixel::blend(&mut bg, background.color().into());
let to_draw_tr = to_draw.transformed(renderer.actual_renderer.rotation);
for line in to_draw_tr.min_y()..to_draw_tr.max_y() {
let begin = line as usize * pixel_stride + to_draw_tr.origin.x as usize;
renderer.actual_renderer.processor.buffer[begin..]
[..to_draw_tr.width() as usize]
.fill(bg);
}
for (component, origin) in components {
crate::item_rendering::render_component_items(
component,
&mut renderer,
*origin,
);
}
if let Some(metrics) = &self.rendering_metrics_collector {
metrics.measure_frame_rendered(&mut renderer);
if metrics.refresh_mode() == RefreshMode::FullSpeed {
self.force_screen_refresh.set(true);
}
}
PhysicalRegion(to_draw_tr)
})
.unwrap_or_default()
}
pub fn render_by_line(&self, line_buffer: impl LineBufferProvider) -> PhysicalRegion {
let Some(window) = self.maybe_window_adapter.borrow().as_ref().and_then(|w| w.upgrade())
else {
return Default::default();
};
let window_inner = WindowInner::from_pub(window.window());
let component_rc = window_inner.component();
let component = crate::item_tree::ItemTreeRc::borrow_pin(&component_rc);
if let Some(window_item) = crate::items::ItemRef::downcast_pin::<crate::items::WindowItem>(
component.as_ref().get_item_ref(0),
) {
let factor = ScaleFactor::new(window_inner.scale_factor());
let size = LogicalSize::from_lengths(window_item.width(), window_item.height()).cast()
* factor;
render_window_frame_by_line(
window_inner,
window_item.background(),
size.cast(),
self,
line_buffer,
)
} else {
PhysicalRegion(Default::default())
}
}
}
#[doc(hidden)]
impl RendererSealed for SoftwareRenderer {
fn text_size(
&self,
font_request: crate::graphics::FontRequest,
text: &str,
max_width: Option<LogicalLength>,
scale_factor: ScaleFactor,
) -> LogicalSize {
fonts::text_size(font_request, text, max_width, scale_factor)
}
fn text_input_byte_offset_for_position(
&self,
text_input: Pin<&crate::items::TextInput>,
pos: LogicalPoint,
font_request: crate::graphics::FontRequest,
scale_factor: ScaleFactor,
) -> usize {
let visual_representation = text_input.visual_representation(None);
let font = fonts::match_font(&font_request, scale_factor);
let width = (text_input.width().cast() * scale_factor).cast();
let height = (text_input.height().cast() * scale_factor).cast();
let pos = (pos.cast() * scale_factor)
.clamp(euclid::point2(0., 0.), euclid::point2(i16::MAX, i16::MAX).cast())
.cast();
match font {
fonts::Font::PixelFont(pf) => {
let layout = fonts::text_layout_for_font(&pf, &font_request, scale_factor);
let paragraph = TextParagraphLayout {
string: &visual_representation.text,
layout,
max_width: width,
max_height: height,
horizontal_alignment: text_input.horizontal_alignment(),
vertical_alignment: text_input.vertical_alignment(),
wrap: text_input.wrap(),
overflow: TextOverflow::Clip,
single_line: false,
};
visual_representation.map_byte_offset_from_byte_offset_in_visual_text(
paragraph.byte_offset_for_position((pos.x_length(), pos.y_length())),
)
}
#[cfg(all(feature = "software-renderer-systemfonts", not(target_arch = "wasm32")))]
fonts::Font::VectorFont(vf) => {
let layout = fonts::text_layout_for_font(&vf, &font_request, scale_factor);
let paragraph = TextParagraphLayout {
string: &visual_representation.text,
layout,
max_width: width,
max_height: height,
horizontal_alignment: text_input.horizontal_alignment(),
vertical_alignment: text_input.vertical_alignment(),
wrap: text_input.wrap(),
overflow: TextOverflow::Clip,
single_line: false,
};
visual_representation.map_byte_offset_from_byte_offset_in_visual_text(
paragraph.byte_offset_for_position((pos.x_length(), pos.y_length())),
)
}
}
}
fn text_input_cursor_rect_for_byte_offset(
&self,
text_input: Pin<&crate::items::TextInput>,
byte_offset: usize,
font_request: crate::graphics::FontRequest,
scale_factor: ScaleFactor,
) -> LogicalRect {
let visual_representation = text_input.visual_representation(None);
let font = fonts::match_font(&font_request, scale_factor);
let width = (text_input.width().cast() * scale_factor).cast();
let height = (text_input.height().cast() * scale_factor).cast();
let (cursor_position, cursor_height) = match font {
fonts::Font::PixelFont(pf) => {
let layout = fonts::text_layout_for_font(&pf, &font_request, scale_factor);
let paragraph = TextParagraphLayout {
string: &visual_representation.text,
layout,
max_width: width,
max_height: height,
horizontal_alignment: text_input.horizontal_alignment(),
vertical_alignment: text_input.vertical_alignment(),
wrap: text_input.wrap(),
overflow: TextOverflow::Clip,
single_line: false,
};
(paragraph.cursor_pos_for_byte_offset(byte_offset), pf.height())
}
#[cfg(all(feature = "software-renderer-systemfonts", not(target_arch = "wasm32")))]
fonts::Font::VectorFont(vf) => {
let layout = fonts::text_layout_for_font(&vf, &font_request, scale_factor);
let paragraph = TextParagraphLayout {
string: &visual_representation.text,
layout,
max_width: width,
max_height: height,
horizontal_alignment: text_input.horizontal_alignment(),
vertical_alignment: text_input.vertical_alignment(),
wrap: text_input.wrap(),
overflow: TextOverflow::Clip,
single_line: false,
};
(paragraph.cursor_pos_for_byte_offset(byte_offset), vf.height())
}
};
(PhysicalRect::new(
PhysicalPoint::from_lengths(cursor_position.0, cursor_position.1),
PhysicalSize::from_lengths(
(text_input.text_cursor_width().cast() * scale_factor).cast(),
cursor_height,
),
)
.cast()
/ scale_factor)
.cast()
}
fn free_graphics_resources(
&self,
_component: crate::item_tree::ItemTreeRef,
items: &mut dyn Iterator<Item = Pin<crate::items::ItemRef<'_>>>,
) -> Result<(), crate::platform::PlatformError> {
for item in items {
item.cached_rendering_data_offset().release(&mut self.partial_cache.borrow_mut());
}
self.force_screen_refresh.set(true);
Ok(())
}
fn mark_dirty_region(&self, region: crate::item_rendering::DirtyRegion) {
self.force_dirty.set(self.force_dirty.get().union(®ion))
}
fn register_bitmap_font(&self, font_data: &'static crate::graphics::BitmapFont) {
fonts::register_bitmap_font(font_data);
}
#[cfg(all(feature = "software-renderer-systemfonts", not(target_arch = "wasm32")))]
fn register_font_from_memory(
&self,
data: &'static [u8],
) -> Result<(), Box<dyn std::error::Error>> {
self::fonts::systemfonts::register_font_from_memory(data)
}
#[cfg(all(feature = "software-renderer-systemfonts", not(target_arch = "wasm32")))]
fn register_font_from_path(
&self,
path: &std::path::Path,
) -> Result<(), Box<dyn std::error::Error>> {
self::fonts::systemfonts::register_font_from_path(path)
}
fn default_font_size(&self) -> LogicalLength {
self::fonts::DEFAULT_FONT_SIZE
}
fn set_window_adapter(&self, window_adapter: &Rc<dyn WindowAdapter>) {
*self.maybe_window_adapter.borrow_mut() = Some(Rc::downgrade(window_adapter));
self.partial_cache.borrow_mut().clear();
}
}
fn render_window_frame_by_line(
window: &WindowInner,
background: Brush,
size: PhysicalSize,
renderer: &SoftwareRenderer,
mut line_buffer: impl LineBufferProvider,
) -> PhysicalRegion {
let rotation = RotationInfo { orientation: renderer.rotation.get(), screen_size: size };
let mut scene = prepare_scene(window, size, renderer);
let dirty_region = scene.dirty_region;
let to_draw_tr = dirty_region.transformed(rotation);
debug_assert!(scene.current_line >= dirty_region.origin.y_length());
let mut background_color = TargetPixel::background();
TargetPixel::blend(&mut background_color, background.color().into());
while scene.current_line < dirty_region.origin.y_length() + dirty_region.size.height_length() {
line_buffer.process_line(
scene.current_line.get() as usize,
to_draw_tr.min_x() as usize..to_draw_tr.max_x() as usize,
|line_buffer| {
let offset = to_draw_tr.min_x() as usize;
line_buffer.fill(background_color);
for span in scene.items[0..scene.current_items_index].iter().rev() {
debug_assert!(scene.current_line >= span.pos.y_length());
debug_assert!(
scene.current_line < span.pos.y_length() + span.size.height_length(),
);
match span.command {
SceneCommand::Rectangle { color } => {
TargetPixel::blend_slice(
&mut line_buffer[span.pos.x as usize - offset
..(span.pos.x_length() + span.size.width_length()).get()
as usize
- offset],
color,
);
}
SceneCommand::Texture { texture_index } => {
let texture = &scene.vectors.textures[texture_index as usize];
draw_functions::draw_texture_line(
&PhysicalRect {
origin: span.pos - euclid::vec2(offset as i16, 0),
size: span.size,
},
scene.current_line,
texture,
line_buffer,
);
}
SceneCommand::SharedBuffer { shared_buffer_index } => {
let texture = scene.vectors.shared_buffers
[shared_buffer_index as usize]
.as_texture();
draw_functions::draw_texture_line(
&PhysicalRect {
origin: span.pos - euclid::vec2(offset as i16, 0),
size: span.size,
},
scene.current_line,
&texture,
line_buffer,
);
}
SceneCommand::RoundedRectangle { rectangle_index } => {
let rr = &scene.vectors.rounded_rectangles[rectangle_index as usize];
draw_functions::draw_rounded_rectangle_line(
&PhysicalRect {
origin: span.pos - euclid::vec2(offset as i16, 0),
size: span.size,
},
scene.current_line,
rr,
line_buffer,
);
}
SceneCommand::Gradient { gradient_index } => {
let g = &scene.vectors.gradients[gradient_index as usize];
draw_functions::draw_gradient_line(
&PhysicalRect {
origin: span.pos - euclid::vec2(offset as i16, 0),
size: span.size,
},
scene.current_line,
g,
line_buffer,
);
}
}
}
},
);
if scene.current_line < dirty_region.origin.y_length() + dirty_region.size.height_length() {
scene.next_line();
}
}
PhysicalRegion(to_draw_tr)
}
#[derive(Default)]
struct SceneVectors {
textures: Vec<SceneTexture<'static>>,
rounded_rectangles: Vec<RoundedRectangle>,
shared_buffers: Vec<SharedBufferCommand>,
gradients: Vec<GradientCommand>,
}
struct Scene {
current_line: PhysicalLength,
items: Vec<SceneItem>,
vectors: SceneVectors,
future_items_index: usize,
current_items_index: usize,
dirty_region: DirtyRegion,
}
impl Scene {
pub fn new(
mut items: Vec<SceneItem>,
vectors: SceneVectors,
dirty_region: DirtyRegion,
) -> Self {
let current_line = dirty_region.origin.y_length();
items.retain(|i| i.pos.y_length() + i.size.height_length() > current_line);
items.sort_unstable_by(compare_scene_item);
let current_items_index = items.partition_point(|i| i.pos.y_length() <= current_line);
items[..current_items_index].sort_unstable_by(|a, b| b.z.cmp(&a.z));
Self {
items,
current_line,
current_items_index,
future_items_index: current_items_index,
vectors,
dirty_region,
}
}
pub fn next_line(&mut self) {
self.current_line += PhysicalLength::new(1);
let (mut i, mut j, mut tmp1, mut tmp2) =
(0, 0, self.current_items_index, self.current_items_index);
'outer: loop {
let future_next_z = self
.items
.get(self.future_items_index)
.filter(|i| i.pos.y_length() <= self.current_line)
.map(|i| i.z);
let item = loop {
if tmp1 != tmp2 {
if future_next_z.map_or(true, |z| self.items[tmp1].z > z) {
let idx = tmp1;
tmp1 += 1;
if tmp1 == tmp2 {
tmp1 = self.current_items_index;
tmp2 = self.current_items_index;
}
break self.items[idx];
}
} else if j < self.current_items_index {
let item = &self.items[j];
if item.pos.y_length() + item.size.height_length() <= self.current_line {
j += 1;
continue;
}
if future_next_z.map_or(true, |z| item.z > z) {
j += 1;
break *item;
}
}
if future_next_z.is_some() {
self.future_items_index += 1;
break self.items[self.future_items_index - 1];
}
break 'outer;
};
if i != j {
} else if j >= self.current_items_index && tmp1 == tmp2 {
j += 1
} else if self.items[j].pos.y_length() + self.items[j].size.height_length()
<= self.current_line
{
j += 1;
} else if tmp2 < self.future_items_index && j < self.current_items_index {
let to_move = self.items[j];
self.items[tmp2] = to_move;
j += 1;
tmp2 += 1;
} else {
debug_assert!(tmp1 >= self.current_items_index);
let sort_begin = i;
while j < self.current_items_index {
let item = self.items[j];
if item.pos.y_length() + item.size.height_length() > self.current_line {
self.items[i] = item;
i += 1;
}
j += 1;
}
self.items.copy_within(tmp1..tmp2, i);
i += tmp2 - tmp1;
debug_assert!(i < self.future_items_index);
self.items[i] = item;
i += 1;
while self.future_items_index < self.items.len() {
let item = self.items[self.future_items_index];
if item.pos.y_length() > self.current_line {
break;
}
self.items[i] = item;
i += 1;
self.future_items_index += 1;
}
self.items[sort_begin..i].sort_unstable_by(|a, b| b.z.cmp(&a.z));
break;
}
self.items[i] = item;
i += 1;
}
self.current_items_index = i;
debug_assert!(self.items[0..self.current_items_index].windows(2).all(|x| x[0].z >= x[1].z));
}
}
#[derive(Clone, Copy, Debug)]
struct SceneItem {
pos: PhysicalPoint,
size: PhysicalSize,
z: u16,
command: SceneCommand,
}
fn compare_scene_item(a: &SceneItem, b: &SceneItem) -> core::cmp::Ordering {
match a.pos.y.partial_cmp(&b.pos.y) {
None | Some(core::cmp::Ordering::Equal) => {}
Some(ord) => return ord,
}
match a.z.partial_cmp(&b.z) {
None | Some(core::cmp::Ordering::Equal) => {}
Some(ord) => return ord.reverse(),
}
core::cmp::Ordering::Equal
}
#[derive(Clone, Copy, Debug)]
#[repr(u8)]
enum SceneCommand {
Rectangle {
color: PremultipliedRgbaColor,
},
Texture {
texture_index: u16,
},
SharedBuffer {
shared_buffer_index: u16,
},
RoundedRectangle {
rectangle_index: u16,
},
Gradient {
gradient_index: u16,
},
}
struct SceneTexture<'a> {
data: &'a [u8],
format: PixelFormat,
pixel_stride: u16,
source_size: PhysicalSize,
color: Color,
alpha: u8,
rotation: WindowRotation,
}
enum SharedBufferData {
SharedImage(SharedImageBuffer),
AlphaMap { data: Rc<[u8]>, width: u16 },
}
impl SharedBufferData {
fn width(&self) -> usize {
match self {
SharedBufferData::SharedImage(image) => image.width() as usize,
SharedBufferData::AlphaMap { width, .. } => *width as usize,
}
}
}
struct SharedBufferCommand {
buffer: SharedBufferData,
source_rect: PhysicalRect,
colorize: Color,
alpha: u8,
rotation: WindowRotation,
}
impl SharedBufferCommand {
fn as_texture(&self) -> SceneTexture<'_> {
let begin = self.buffer.width() * self.source_rect.min_y() as usize
+ self.source_rect.min_x() as usize;
match &self.buffer {
SharedBufferData::SharedImage(SharedImageBuffer::RGB8(b)) => SceneTexture {
data: &b.as_bytes()[begin * 3..],
pixel_stride: b.width() as u16,
format: PixelFormat::Rgb,
source_size: self.source_rect.size,
color: self.colorize,
alpha: self.alpha,
rotation: self.rotation,
},
SharedBufferData::SharedImage(SharedImageBuffer::RGBA8(b)) => SceneTexture {
data: &b.as_bytes()[begin * 4..],
pixel_stride: b.width() as u16,
format: PixelFormat::Rgba,
source_size: self.source_rect.size,
color: self.colorize,
alpha: self.alpha,
rotation: self.rotation,
},
SharedBufferData::SharedImage(SharedImageBuffer::RGBA8Premultiplied(b)) => {
SceneTexture {
data: &b.as_bytes()[begin * 4..],
pixel_stride: b.width() as u16,
format: PixelFormat::RgbaPremultiplied,
source_size: self.source_rect.size,
color: self.colorize,
alpha: self.alpha,
rotation: self.rotation,
}
}
SharedBufferData::AlphaMap { data, width } => SceneTexture {
data: &data[begin..],
pixel_stride: *width,
format: PixelFormat::AlphaMap,
source_size: self.source_rect.size,
color: self.colorize,
alpha: self.alpha,
rotation: self.rotation,
},
}
}
}
#[derive(Debug)]
struct RoundedRectangle {
radius: PhysicalLength,
width: PhysicalLength,
border_color: PremultipliedRgbaColor,
inner_color: PremultipliedRgbaColor,
left_clip: PhysicalLength,
right_clip: PhysicalLength,
top_clip: PhysicalLength,
bottom_clip: PhysicalLength,
}
#[derive(Debug)]
struct GradientCommand {
color1: PremultipliedRgbaColor,
color2: PremultipliedRgbaColor,
start: u8,
flags: u8,
left_clip: PhysicalLength,
right_clip: PhysicalLength,
top_clip: PhysicalLength,
bottom_clip: PhysicalLength,
}
fn prepare_scene(
window: &WindowInner,
size: PhysicalSize,
software_renderer: &SoftwareRenderer,
) -> Scene {
let factor = ScaleFactor::new(window.scale_factor());
let prepare_scene = SceneBuilder::new(
size,
factor,
window,
PrepareScene::default(),
software_renderer.rotation.get(),
);
let mut renderer = crate::item_rendering::PartialRenderer::new(
&software_renderer.partial_cache,
software_renderer.force_dirty.take(),
prepare_scene,
);
let mut dirty_region = PhysicalRect::default();
window.draw_contents(|components| {
for (component, origin) in components {
renderer.compute_dirty_regions(component, *origin);
}
dirty_region = (renderer.dirty_region.to_rect().cast() * factor).round_out().cast();
dirty_region = software_renderer.apply_dirty_region(dirty_region, size);
renderer.combine_clip(
(dirty_region.cast() / factor).cast(),
LogicalLength::zero(),
LogicalLength::zero(),
);
for (component, origin) in components {
crate::item_rendering::render_component_items(component, &mut renderer, *origin);
}
});
if let Some(metrics) = &software_renderer.rendering_metrics_collector {
metrics.measure_frame_rendered(&mut renderer);
if metrics.refresh_mode() == RefreshMode::FullSpeed {
software_renderer.force_screen_refresh.set(true);
}
}
let prepare_scene = renderer.into_inner();
Scene::new(prepare_scene.processor.items, prepare_scene.processor.vectors, dirty_region)
}
trait ProcessScene {
fn process_texture(&mut self, geometry: PhysicalRect, texture: SceneTexture<'static>);
fn process_rectangle(&mut self, geometry: PhysicalRect, color: PremultipliedRgbaColor);
fn process_rounded_rectangle(&mut self, geometry: PhysicalRect, data: RoundedRectangle);
fn process_shared_image_buffer(&mut self, geometry: PhysicalRect, buffer: SharedBufferCommand);
fn process_gradient(&mut self, geometry: PhysicalRect, gradient: GradientCommand);
}
struct RenderToBuffer<'a, TargetPixel> {
buffer: &'a mut [TargetPixel],
stride: usize,
}
impl<'a, T: TargetPixel> RenderToBuffer<'a, T> {
fn process_texture_impl(&mut self, geometry: PhysicalRect, texture: SceneTexture<'_>) {
for line in geometry.min_y()..geometry.max_y() {
draw_functions::draw_texture_line(
&geometry,
PhysicalLength::new(line),
&texture,
&mut self.buffer[line as usize * self.stride..],
);
}
}
}
impl<'a, T: TargetPixel> ProcessScene for RenderToBuffer<'a, T> {
fn process_texture(&mut self, geometry: PhysicalRect, texture: SceneTexture<'static>) {
self.process_texture_impl(geometry, texture)
}
fn process_shared_image_buffer(&mut self, geometry: PhysicalRect, buffer: SharedBufferCommand) {
let texture = buffer.as_texture();
self.process_texture_impl(geometry, texture);
}
fn process_rectangle(&mut self, geometry: PhysicalRect, color: PremultipliedRgbaColor) {
for line in geometry.min_y()..geometry.max_y() {
let begin = line as usize * self.stride + geometry.origin.x as usize;
TargetPixel::blend_slice(&mut self.buffer[begin..][..geometry.width() as usize], color);
}
}
fn process_rounded_rectangle(&mut self, geometry: PhysicalRect, rr: RoundedRectangle) {
for line in geometry.min_y()..geometry.max_y() {
draw_functions::draw_rounded_rectangle_line(
&geometry,
PhysicalLength::new(line),
&rr,
&mut self.buffer[line as usize * self.stride..],
);
}
}
fn process_gradient(&mut self, geometry: PhysicalRect, g: GradientCommand) {
for line in geometry.min_y()..geometry.max_y() {
draw_functions::draw_gradient_line(
&geometry,
PhysicalLength::new(line),
&g,
&mut self.buffer[line as usize * self.stride..],
);
}
}
}
#[derive(Default)]
struct PrepareScene {
items: Vec<SceneItem>,
vectors: SceneVectors,
}
impl ProcessScene for PrepareScene {
fn process_texture(&mut self, geometry: PhysicalRect, texture: SceneTexture<'static>) {
let size = geometry.size;
if !size.is_empty() {
let texture_index = self.vectors.textures.len() as u16;
self.vectors.textures.push(texture);
self.items.push(SceneItem {
pos: geometry.origin,
size,
z: self.items.len() as u16,
command: SceneCommand::Texture { texture_index },
});
}
}
fn process_shared_image_buffer(&mut self, geometry: PhysicalRect, buffer: SharedBufferCommand) {
let size = geometry.size;
if !size.is_empty() {
let shared_buffer_index = self.vectors.shared_buffers.len() as u16;
self.vectors.shared_buffers.push(buffer);
self.items.push(SceneItem {
pos: geometry.origin,
size,
z: self.items.len() as u16,
command: SceneCommand::SharedBuffer { shared_buffer_index },
});
}
}
fn process_rectangle(&mut self, geometry: PhysicalRect, color: PremultipliedRgbaColor) {
let size = geometry.size;
if !size.is_empty() {
let z = self.items.len() as u16;
let pos = geometry.origin;
self.items.push(SceneItem { pos, size, z, command: SceneCommand::Rectangle { color } });
}
}
fn process_rounded_rectangle(&mut self, geometry: PhysicalRect, data: RoundedRectangle) {
let size = geometry.size;
if !size.is_empty() {
let rectangle_index = self.vectors.rounded_rectangles.len() as u16;
self.vectors.rounded_rectangles.push(data);
self.items.push(SceneItem {
pos: geometry.origin,
size,
z: self.items.len() as u16,
command: SceneCommand::RoundedRectangle { rectangle_index },
});
}
}
fn process_gradient(&mut self, geometry: PhysicalRect, gradient: GradientCommand) {
let size = geometry.size;
if !size.is_empty() {
let gradient_index = self.vectors.gradients.len() as u16;
self.vectors.gradients.push(gradient);
self.items.push(SceneItem {
pos: geometry.origin,
size,
z: self.items.len() as u16,
command: SceneCommand::Gradient { gradient_index },
});
}
}
}
struct SceneBuilder<'a, T> {
processor: T,
state_stack: Vec<RenderState>,
current_state: RenderState,
scale_factor: ScaleFactor,
window: &'a WindowInner,
rotation: RotationInfo,
}
impl<'a, T: ProcessScene> SceneBuilder<'a, T> {
fn new(
screen_size: PhysicalSize,
scale_factor: ScaleFactor,
window: &'a WindowInner,
processor: T,
orientation: WindowRotation,
) -> Self {
Self {
processor,
state_stack: vec![],
current_state: RenderState {
alpha: 1.,
offset: LogicalPoint::default(),
clip: LogicalRect::new(
LogicalPoint::default(),
(screen_size.cast() / scale_factor).cast(),
),
},
scale_factor,
window,
rotation: RotationInfo { orientation, screen_size },
}
}
fn should_draw(&self, rect: &LogicalRect) -> bool {
!rect.size.is_empty()
&& self.current_state.alpha > 0.01
&& self.current_state.clip.intersects(rect)
}
fn draw_image_impl(
&mut self,
geom: LogicalRect,
source: &crate::graphics::Image,
mut source_rect: IntRect,
image_fit: ImageFit,
colorize: Color,
) {
let global_alpha_u16 = (self.current_state.alpha * 255.) as u16;
let image_inner: &ImageInner = source.into();
let size: euclid::default::Size2D<u32> = source_rect.size.cast();
let phys_size = geom.size_length().cast() * self.scale_factor;
let source_to_target_x = phys_size.width / (size.width as f32);
let source_to_target_y = phys_size.height / (size.height as f32);
let mut image_fit_offset = euclid::Vector2D::default();
let (source_to_target_x, source_to_target_y) = match image_fit {
ImageFit::Fill => (source_to_target_x, source_to_target_y),
ImageFit::Cover => {
let ratio = f32::max(source_to_target_x, source_to_target_y);
if size.width as f32 > phys_size.width / ratio {
let diff = (size.width as f32 - phys_size.width / ratio) as i32;
source_rect.origin.x += diff / 2;
source_rect.size.width -= diff;
}
if size.height as f32 > phys_size.height / ratio {
let diff = (size.height as f32 - phys_size.height / ratio) as i32;
source_rect.origin.y += diff / 2;
source_rect.size.height -= diff;
}
(ratio, ratio)
}
ImageFit::Contain => {
let ratio = f32::min(source_to_target_x, source_to_target_y);
if (size.width as f32) < phys_size.width / ratio {
image_fit_offset.x = (phys_size.width - size.width as f32 * ratio) / 2.;
}
if (size.height as f32) < phys_size.height / ratio {
image_fit_offset.y = (phys_size.height - size.height as f32 * ratio) / 2.;
}
(ratio, ratio)
}
};
let offset =
self.current_state.offset.to_vector().cast() * self.scale_factor + image_fit_offset;
let renderer_clip_in_source_rect_space = (self.current_state.clip.cast()
* self.scale_factor)
.translate(-image_fit_offset)
.scale(1. / source_to_target_x, 1. / source_to_target_y);
match image_inner {
ImageInner::None => (),
ImageInner::StaticTextures(StaticTextures { data, textures, .. }) => {
for t in textures.as_slice() {
if let Some(clipped_relative_source_rect) =
t.rect.intersection(&source_rect).and_then(|clipped_source_rect| {
let relative_clipped_source_rect = clipped_source_rect
.translate(-source_rect.origin.to_vector())
.cast();
euclid::Rect::<_, PhysicalPx>::from_untyped(
&relative_clipped_source_rect,
)
.intersection(&renderer_clip_in_source_rect_space)
})
{
let target_rect = clipped_relative_source_rect
.scale(source_to_target_x, source_to_target_y)
.translate(offset)
.round();
if target_rect.is_empty() {
return;
}
let actual_x = clipped_relative_source_rect.origin.x as usize
+ source_rect.origin.x as usize
- t.rect.origin.x as usize;
let actual_y = clipped_relative_source_rect.origin.y as usize
+ source_rect.origin.y as usize
- t.rect.origin.y as usize;
let pixel_stride = t.rect.width() as u16;
let color = if colorize.alpha() > 0 { colorize } else { t.color };
let alpha = if colorize.alpha() > 0 || t.format == PixelFormat::AlphaMap {
color.alpha() as u16 * global_alpha_u16 / 255
} else {
global_alpha_u16
} as u8;
self.processor.process_texture(
target_rect.cast().transformed(self.rotation),
SceneTexture {
data: &data.as_slice()[t.index
+ ((pixel_stride as usize) * actual_y + actual_x)
* t.format.bpp()..],
pixel_stride,
source_size: clipped_relative_source_rect.size.ceil().cast(),
format: t.format,
color,
alpha,
rotation: self.rotation.orientation,
},
);
}
}
}
_ => {
let img_src_size = source.size();
if let Some(buffer) = image_inner.render_to_buffer(Some(
crate::graphics::fit_size(image_fit, phys_size, img_src_size).cast(),
)) {
if let Some(clipped_relative_source_rect) = renderer_clip_in_source_rect_space
.intersection(&euclid::rect(
0.,
0.,
source_rect.width() as f32,
source_rect.height() as f32,
))
{
let target_rect = clipped_relative_source_rect
.scale(source_to_target_x, source_to_target_y)
.translate(offset)
.round();
let buf_size = buffer.size().cast::<f32>();
let alpha = if colorize.alpha() > 0 {
colorize.alpha() as u16 * global_alpha_u16 / 255
} else {
global_alpha_u16
} as u8;
self.processor.process_shared_image_buffer(
target_rect.cast().transformed(self.rotation),
SharedBufferCommand {
buffer: SharedBufferData::SharedImage(buffer),
source_rect: clipped_relative_source_rect
.translate(
euclid::Point2D::from_untyped(source_rect.origin.cast())
.to_vector(),
)
.scale(
buf_size.width / img_src_size.width as f32,
buf_size.height / img_src_size.height as f32,
)
.cast(),
colorize,
alpha,
rotation: self.rotation.orientation,
},
);
}
} else {
unimplemented!("The image cannot be rendered")
}
}
};
}
fn draw_text_paragraph<Font: AbstractFont>(
&mut self,
paragraph: &TextParagraphLayout<'_, Font>,
physical_clip: euclid::Rect<f32, PhysicalPx>,
offset: euclid::Vector2D<f32, PhysicalPx>,
color: Color,
selection: Option<SelectionInfo>,
) where
Font: crate::textlayout::TextShaper<Length = PhysicalLength>,
Font: GlyphRenderer,
{
paragraph
.layout_lines::<()>(
|glyphs, line_x, line_y, _, sel| {
let baseline_y = line_y + paragraph.layout.font.ascent();
if let (Some(sel), Some(selection)) = (sel, &selection) {
let geometry = euclid::rect(
line_x.get() + sel.start.get(),
line_y.get(),
(sel.end - sel.start).get(),
paragraph.layout.font.height().get(),
);
if let Some(clipped_src) = geometry.intersection(&physical_clip.cast()) {
let geometry =
clipped_src.translate(offset.cast()).transformed(self.rotation);
self.processor
.process_rectangle(geometry, selection.selection_background.into());
}
}
for positioned_glyph in glyphs {
let glyph = paragraph.layout.font.render_glyph(positioned_glyph.glyph_id);
let src_rect = PhysicalRect::new(
PhysicalPoint::from_lengths(
line_x + positioned_glyph.x + glyph.x,
baseline_y - glyph.y - glyph.height,
),
glyph.size(),
)
.cast();
let color = match &selection {
Some(s) if s.selection.contains(&positioned_glyph.text_byte_offset) => {
s.selection_color
}
_ => color,
};
if let Some(clipped_src) = src_rect.intersection(&physical_clip) {
let geometry = clipped_src.translate(offset).round();
if geometry.is_empty() {
continue;
}
let origin = (geometry.origin - offset.round()).round().cast::<usize>();
let actual_x = origin.x - src_rect.origin.x as usize;
let actual_y = origin.y - src_rect.origin.y as usize;
let pixel_stride = glyph.width.get() as u16;
let source_size = geometry.size.cast();
match &glyph.alpha_map {
fonts::GlyphAlphaMap::Static(data) => {
self.processor.process_texture(
geometry.cast().transformed(self.rotation),
SceneTexture {
data: &data
[actual_x + actual_y * pixel_stride as usize..],
pixel_stride,
source_size,
format: PixelFormat::AlphaMap,
color,
alpha: color.alpha(),
rotation: self.rotation.orientation,
},
);
}
fonts::GlyphAlphaMap::Shared(data) => {
self.processor.process_shared_image_buffer(
geometry.cast().transformed(self.rotation),
SharedBufferCommand {
buffer: SharedBufferData::AlphaMap {
data: data.clone(),
width: pixel_stride,
},
source_rect: PhysicalRect::new(
PhysicalPoint::new(actual_x as _, actual_y as _),
source_size,
),
colorize: color,
alpha: color.alpha(),
rotation: self.rotation.orientation,
},
);
}
};
}
}
core::ops::ControlFlow::Continue(())
},
selection.as_ref().map(|s| s.selection.clone()),
)
.ok();
}
fn alpha_color(&self, color: Color) -> Color {
if self.current_state.alpha < 1.0 {
Color::from_argb_u8(
(color.alpha() as f32 * self.current_state.alpha) as u8,
color.red(),
color.green(),
color.blue(),
)
} else {
color
}
}
}
struct SelectionInfo {
selection_color: Color,
selection_background: Color,
selection: core::ops::Range<usize>,
}
#[derive(Clone, Copy)]
struct RenderState {
alpha: f32,
offset: LogicalPoint,
clip: LogicalRect,
}
impl<'a, T: ProcessScene> crate::item_rendering::ItemRenderer for SceneBuilder<'a, T> {
#[allow(clippy::unnecessary_cast)] fn draw_rectangle(
&mut self,
rect: Pin<&crate::items::Rectangle>,
_: &ItemRc,
size: LogicalSize,
) {
let geom = LogicalRect::from(size);
if self.should_draw(&geom) {
let clipped = match geom.intersection(&self.current_state.clip) {
Some(geom) => geom,
None => return,
};
let background = rect.background();
if let Brush::LinearGradient(g) = background {
let geom2 = (geom.cast() * self.scale_factor).transformed(self.rotation);
let clipped2 = (clipped.cast() * self.scale_factor).transformed(self.rotation);
let act_rect = (clipped.translate(self.current_state.offset.to_vector()).cast()
* self.scale_factor)
.round()
.cast()
.transformed(self.rotation);
let angle = g.angle() - self.rotation.orientation.angle();
let tan = angle.to_radians().tan().abs();
let start = if !tan.is_finite() {
255.
} else {
let h = tan * geom2.width() as f32;
255. * h / (h + geom2.height() as f32)
} as u8;
let mut angle = angle as i32 % 360;
if angle < 0 {
angle += 360;
}
let mut stops = g.stops().copied().peekable();
let mut idx = 0;
let stop_count = g.stops().count();
while let (Some(mut s1), Some(mut s2)) = (stops.next(), stops.peek().copied()) {
let mut flags = 0;
if (angle % 180) > 90 {
flags |= 0b1;
}
if angle <= 90 || angle > 270 {
core::mem::swap(&mut s1, &mut s2);
s1.position = 1. - s1.position;
s2.position = 1. - s2.position;
if idx == 0 {
flags |= 0b100;
}
if idx == stop_count - 2 {
flags |= 0b010;
}
} else {
if idx == 0 {
flags |= 0b010;
}
if idx == stop_count - 2 {
flags |= 0b100;
}
}
idx += 1;
let (adjust_left, adjust_right) = if (angle % 180) > 90 {
(
(geom2.width() * s1.position).floor() as i16,
(geom2.width() * (1. - s2.position)).ceil() as i16,
)
} else {
(
(geom2.width() * (1. - s2.position)).ceil() as i16,
(geom2.width() * s1.position).floor() as i16,
)
};
let gr = GradientCommand {
color1: self.alpha_color(s1.color).into(),
color2: self.alpha_color(s2.color).into(),
start,
flags,
top_clip: Length::new(
(clipped2.min_y() - geom2.min_y()) as i16
- (geom2.height() * s1.position).floor() as i16,
),
bottom_clip: Length::new(
(geom2.max_y() - clipped2.max_y()) as i16
- (geom2.height() * (1. - s2.position)).ceil() as i16,
),
left_clip: Length::new(
(clipped2.min_x() - geom2.min_x()) as i16 - adjust_left,
),
right_clip: Length::new(
(geom2.max_x() - clipped2.max_x()) as i16 - adjust_right,
),
};
let size_y = act_rect.height_length() + gr.top_clip + gr.bottom_clip;
let size_x = act_rect.width_length() + gr.left_clip + gr.right_clip;
if size_x.get() == 0 || size_y.get() == 0 {
continue;
}
self.processor.process_gradient(act_rect, gr);
}
return;
}
let color = self.alpha_color(background.color());
if color.alpha() == 0 {
return;
}
let geometry = (clipped.translate(self.current_state.offset.to_vector()).cast()
* self.scale_factor)
.round()
.cast()
.transformed(self.rotation);
self.processor.process_rectangle(geometry, color.into());
}
}
#[allow(clippy::unnecessary_cast)] fn draw_border_rectangle(
&mut self,
rect: Pin<&crate::items::BorderRectangle>,
_: &ItemRc,
size: LogicalSize,
) {
let geom = LogicalRect::from(size);
if self.should_draw(&geom) {
let mut border = rect.border_width();
let radius = rect.border_radius();
let color = self.alpha_color(rect.background().color());
let border_color = if border.get() as f32 > 0.01 {
self.alpha_color(rect.border_color().color())
} else {
Color::default()
};
let mut border_color = PremultipliedRgbaColor::from(border_color);
let color = PremultipliedRgbaColor::from(color);
if border_color.alpha == 0 {
border = LogicalLength::new(0 as _);
} else if border_color.alpha < 255 {
let b = border_color;
let b_alpha_16 = b.alpha as u16;
border_color = PremultipliedRgbaColor {
red: ((color.red as u16 * (255 - b_alpha_16)) / 255) as u8 + b.red,
green: ((color.green as u16 * (255 - b_alpha_16)) / 255) as u8 + b.green,
blue: ((color.blue as u16 * (255 - b_alpha_16)) / 255) as u8 + b.blue,
alpha: (color.alpha as u16 + b_alpha_16
- (color.alpha as u16 * b_alpha_16) / 255) as u8,
}
}
if radius.get() > 0 as _ {
let radius = radius
.min(geom.width_length() / 2 as Coord)
.min(geom.height_length() / 2 as Coord);
if let Some(clipped) = geom.intersection(&self.current_state.clip) {
let geom2 = (geom.cast() * self.scale_factor).transformed(self.rotation);
let clipped2 = (clipped.cast() * self.scale_factor).transformed(self.rotation);
let geometry =
(clipped.translate(self.current_state.offset.to_vector()).cast()
* self.scale_factor)
.round()
.cast()
.transformed(self.rotation);
const E: f32 = 0.00001;
self.processor.process_rounded_rectangle(
geometry,
RoundedRectangle {
radius: (radius.cast() * self.scale_factor).cast(),
width: (border.cast() * self.scale_factor).cast(),
border_color,
inner_color: color,
top_clip: PhysicalLength::new(
(clipped2.min_y() - geom2.min_y() + E) as _,
),
bottom_clip: PhysicalLength::new(
(geom2.max_y() - clipped2.max_y() + E) as _,
),
left_clip: PhysicalLength::new(
(clipped2.min_x() - geom2.min_x() + E) as _,
),
right_clip: PhysicalLength::new(
(geom2.max_x() - clipped2.max_x() + E) as _,
),
},
);
}
return;
}
if color.alpha > 0 {
if let Some(r) = geom
.inflate(-border.get(), -border.get())
.intersection(&self.current_state.clip)
{
let geometry = (r.translate(self.current_state.offset.to_vector()).cast()
* self.scale_factor)
.round()
.cast()
.transformed(self.rotation);
self.processor.process_rectangle(geometry, color);
}
}
if border_color.alpha > 0 {
let mut add_border = |r: LogicalRect| {
if let Some(r) = r.intersection(&self.current_state.clip) {
let geometry = (r.translate(self.current_state.offset.to_vector()).cast()
* self.scale_factor)
.round()
.cast()
.transformed(self.rotation);
self.processor.process_rectangle(geometry, border_color);
}
};
let b = border.get();
add_border(euclid::rect(0 as _, 0 as _, geom.width(), b));
add_border(euclid::rect(0 as _, geom.height() - b, geom.width(), b));
add_border(euclid::rect(0 as _, b, b, geom.height() - b - b));
add_border(euclid::rect(geom.width() - b, b, b, geom.height() - b - b));
}
}
}
fn draw_image(&mut self, image: Pin<&crate::items::ImageItem>, _: &ItemRc, size: LogicalSize) {
let geom = LogicalRect::from(size);
if self.should_draw(&geom) {
let source = image.source();
self.draw_image_impl(
geom,
&source,
euclid::Rect::new(Default::default(), source.size().cast()),
image.image_fit(),
image.colorize().color(),
);
}
}
fn draw_clipped_image(
&mut self,
image: Pin<&crate::items::ClippedImage>,
_: &ItemRc,
size: LogicalSize,
) {
let geom = LogicalRect::from(size);
if self.should_draw(&geom) {
let source = image.source();
let source_clip_x = image.source_clip_x();
let source_clip_y = image.source_clip_y();
let source_size = source.size();
let mut source_clip_width = image.source_clip_width();
if source_clip_width == 0 {
source_clip_width = source_size.width as i32 - source_clip_x;
}
let mut source_clip_height = image.source_clip_height();
if source_clip_height == 0 {
source_clip_height = source_size.height as i32 - source_clip_y;
}
self.draw_image_impl(
geom,
&source,
euclid::rect(source_clip_x, source_clip_y, source_clip_width, source_clip_height),
image.image_fit(),
image.colorize().color(),
);
}
}
fn draw_text(&mut self, text: Pin<&crate::items::Text>, _: &ItemRc, size: LogicalSize) {
let string = text.text();
if string.trim().is_empty() {
return;
}
let geom = LogicalRect::from(size);
if !self.should_draw(&geom) {
return;
}
let font_request = text.font_request(self.window);
let color = self.alpha_color(text.color().color());
let max_size = (geom.size.cast() * self.scale_factor).cast();
let physical_clip = if let Some(logical_clip) = self.current_state.clip.intersection(&geom)
{
logical_clip.cast() * self.scale_factor
} else {
return; };
let offset = self.current_state.offset.to_vector().cast() * self.scale_factor;
let font = fonts::match_font(&font_request, self.scale_factor);
match font {
fonts::Font::PixelFont(pf) => {
let layout = fonts::text_layout_for_font(&pf, &font_request, self.scale_factor);
let paragraph = TextParagraphLayout {
string: &string,
layout,
max_width: max_size.width_length(),
max_height: max_size.height_length(),
horizontal_alignment: text.horizontal_alignment(),
vertical_alignment: text.vertical_alignment(),
wrap: text.wrap(),
overflow: text.overflow(),
single_line: false,
};
self.draw_text_paragraph(¶graph, physical_clip, offset, color, None);
}
#[cfg(all(feature = "software-renderer-systemfonts", not(target_arch = "wasm32")))]
fonts::Font::VectorFont(vf) => {
let layout = fonts::text_layout_for_font(&vf, &font_request, self.scale_factor);
let paragraph = TextParagraphLayout {
string: &string,
layout,
max_width: max_size.width_length(),
max_height: max_size.height_length(),
horizontal_alignment: text.horizontal_alignment(),
vertical_alignment: text.vertical_alignment(),
wrap: text.wrap(),
overflow: text.overflow(),
single_line: false,
};
self.draw_text_paragraph(¶graph, physical_clip, offset, color, None);
}
}
}
fn draw_text_input(
&mut self,
text_input: Pin<&crate::items::TextInput>,
_: &ItemRc,
size: LogicalSize,
) {
let geom = LogicalRect::from(size);
if !self.should_draw(&geom) {
return;
}
let font_request = text_input.font_request(&self.window.window_adapter());
let color = self.alpha_color(text_input.color().color());
let max_size = (geom.size.cast() * self.scale_factor).cast();
let physical_clip = if let Some(logical_clip) = self.current_state.clip.intersection(&geom)
{
logical_clip.cast() * self.scale_factor
} else {
return; };
let offset = self.current_state.offset.to_vector().cast() * self.scale_factor;
let font = fonts::match_font(&font_request, self.scale_factor);
let text_visual_representation = text_input.visual_representation(None);
let selection =
(!text_visual_representation.selection_range.is_empty()).then_some(SelectionInfo {
selection_background: self.alpha_color(text_input.selection_background_color()),
selection_color: self.alpha_color(text_input.selection_foreground_color()),
selection: text_visual_representation.selection_range.clone(),
});
let cursor_pos_and_height = match font {
fonts::Font::PixelFont(pf) => {
let paragraph = TextParagraphLayout {
string: &text_visual_representation.text,
layout: fonts::text_layout_for_font(&pf, &font_request, self.scale_factor),
max_width: max_size.width_length(),
max_height: max_size.height_length(),
horizontal_alignment: text_input.horizontal_alignment(),
vertical_alignment: text_input.vertical_alignment(),
wrap: text_input.wrap(),
overflow: TextOverflow::Clip,
single_line: text_input.single_line(),
};
self.draw_text_paragraph(¶graph, physical_clip, offset, color, selection);
text_visual_representation.cursor_position.map(|cursor_offset| {
(paragraph.cursor_pos_for_byte_offset(cursor_offset), pf.height())
})
}
#[cfg(all(feature = "software-renderer-systemfonts", not(target_arch = "wasm32")))]
fonts::Font::VectorFont(vf) => {
let paragraph = TextParagraphLayout {
string: &text_visual_representation.text,
layout: fonts::text_layout_for_font(&vf, &font_request, self.scale_factor),
max_width: max_size.width_length(),
max_height: max_size.height_length(),
horizontal_alignment: text_input.horizontal_alignment(),
vertical_alignment: text_input.vertical_alignment(),
wrap: text_input.wrap(),
overflow: TextOverflow::Clip,
single_line: text_input.single_line(),
};
self.draw_text_paragraph(¶graph, physical_clip, offset, color, selection);
text_visual_representation.cursor_position.map(|cursor_offset| {
(paragraph.cursor_pos_for_byte_offset(cursor_offset), vf.height())
})
}
};
if let Some(((cursor_x, cursor_y), cursor_height)) = cursor_pos_and_height {
let cursor_rect = PhysicalRect::new(
PhysicalPoint::from_lengths(cursor_x, cursor_y),
PhysicalSize::from_lengths(
(text_input.text_cursor_width().cast() * self.scale_factor).cast(),
cursor_height,
),
);
if let Some(clipped_src) = cursor_rect.intersection(&physical_clip.cast()) {
let geometry = clipped_src.translate(offset.cast()).transformed(self.rotation);
self.processor.process_rectangle(geometry, color.into());
}
}
}
#[cfg(feature = "std")]
fn draw_path(&mut self, _path: Pin<&crate::items::Path>, _: &ItemRc, _size: LogicalSize) {
}
fn draw_box_shadow(
&mut self,
_box_shadow: Pin<&crate::items::BoxShadow>,
_: &ItemRc,
_size: LogicalSize,
) {
}
fn combine_clip(
&mut self,
other: LogicalRect,
_radius: LogicalLength,
_border_width: LogicalLength,
) -> bool {
match self.current_state.clip.intersection(&other) {
Some(r) => {
self.current_state.clip = r;
true
}
None => {
self.current_state.clip = LogicalRect::default();
false
}
}
}
fn get_current_clip(&self) -> LogicalRect {
self.current_state.clip
}
fn translate(&mut self, distance: LogicalVector) {
self.current_state.offset += distance;
self.current_state.clip = self.current_state.clip.translate(-distance)
}
fn rotate(&mut self, _angle_in_degrees: f32) {
todo!()
}
fn apply_opacity(&mut self, opacity: f32) {
self.current_state.alpha *= opacity;
}
fn save_state(&mut self) {
self.state_stack.push(self.current_state);
}
fn restore_state(&mut self) {
self.current_state = self.state_stack.pop().unwrap();
}
fn scale_factor(&self) -> f32 {
self.scale_factor.0
}
fn draw_cached_pixmap(
&mut self,
_item: &ItemRc,
update_fn: &dyn Fn(&mut dyn FnMut(u32, u32, &[u8])),
) {
update_fn(&mut |width, height, data| {
let img = SharedImageBuffer::RGBA8Premultiplied(SharedPixelBuffer::clone_from_slice(
data, width, height,
));
let physical_clip = self.current_state.clip.cast() * self.scale_factor;
let src_rect = euclid::rect(0., 0., width as f32, height as f32);
if let Some(clipped_src) = src_rect.intersection(&physical_clip) {
let offset = self.current_state.offset.to_vector().cast() * self.scale_factor;
let geometry = clipped_src.translate(offset).round();
let origin = (geometry.origin - offset.round()).cast::<usize>();
let actual_x = origin.x - src_rect.origin.x as usize;
let actual_y = origin.y - src_rect.origin.y as usize;
self.processor.process_shared_image_buffer(
geometry.cast().transformed(self.rotation),
SharedBufferCommand {
buffer: SharedBufferData::SharedImage(img),
source_rect: PhysicalRect::new(
PhysicalPoint::new(actual_x as _, actual_y as _),
geometry.size.cast(),
),
colorize: Default::default(),
alpha: (self.current_state.alpha * 255.) as u8,
rotation: self.rotation.orientation,
},
);
}
});
}
fn draw_string(&mut self, string: &str, color: Color) {
let font_request = Default::default();
let font = fonts::match_font(&font_request, self.scale_factor);
let clip = self.current_state.clip.cast() * self.scale_factor;
match font {
fonts::Font::PixelFont(pf) => {
let layout = fonts::text_layout_for_font(&pf, &font_request, self.scale_factor);
let paragraph = TextParagraphLayout {
string: &string,
layout,
max_width: clip.width_length().cast(),
max_height: clip.height_length().cast(),
horizontal_alignment: Default::default(),
vertical_alignment: Default::default(),
wrap: Default::default(),
overflow: Default::default(),
single_line: false,
};
self.draw_text_paragraph(¶graph, clip, Default::default(), color, None);
}
#[cfg(all(feature = "software-renderer-systemfonts", not(target_arch = "wasm32")))]
fonts::Font::VectorFont(vf) => {
let layout = fonts::text_layout_for_font(&vf, &font_request, self.scale_factor);
let paragraph = TextParagraphLayout {
string: &string,
layout,
max_width: clip.width_length().cast(),
max_height: clip.height_length().cast(),
horizontal_alignment: Default::default(),
vertical_alignment: Default::default(),
wrap: Default::default(),
overflow: Default::default(),
single_line: false,
};
self.draw_text_paragraph(¶graph, clip, Default::default(), color, None);
}
}
}
fn draw_image_direct(&mut self, _image: crate::graphics::Image) {
todo!()
}
fn window(&self) -> &crate::window::WindowInner {
self.window
}
fn as_any(&mut self) -> Option<&mut dyn core::any::Any> {
None
}
}
pub struct MinimalSoftwareWindow {
window: Window,
renderer: SoftwareRenderer,
needs_redraw: Cell<bool>,
size: Cell<crate::api::PhysicalSize>,
}
impl MinimalSoftwareWindow {
pub fn new(repaint_buffer_type: RepaintBufferType) -> Rc<Self> {
Rc::new_cyclic(|w: &Weak<Self>| Self {
window: Window::new(w.clone()),
renderer: SoftwareRenderer::new_with_repaint_buffer_type(repaint_buffer_type),
needs_redraw: Default::default(),
size: Default::default(),
})
}
pub fn draw_if_needed(&self, render_callback: impl FnOnce(&SoftwareRenderer)) -> bool {
if self.needs_redraw.replace(false) || self.renderer.rendering_metrics_collector.is_some() {
render_callback(&self.renderer);
true
} else {
false
}
}
#[doc(hidden)]
pub fn set_size(&self, size: impl Into<crate::api::WindowSize>) {
self.window.set_size(size);
}
}
impl WindowAdapter for MinimalSoftwareWindow {
fn window(&self) -> &Window {
&self.window
}
fn renderer(&self) -> &dyn Renderer {
&self.renderer
}
fn size(&self) -> crate::api::PhysicalSize {
self.size.get()
}
fn set_size(&self, size: crate::api::WindowSize) {
self.size.set(size.to_physical(1.));
self.window
.dispatch_event(crate::platform::WindowEvent::Resized { size: size.to_logical(1.) })
}
fn request_redraw(&self) {
self.needs_redraw.set(true);
}
}
impl core::ops::Deref for MinimalSoftwareWindow {
type Target = Window;
fn deref(&self) -> &Self::Target {
&self.window
}
}