1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
use crate::primitive::Primitive;
use crate::{array_default::ArrayIter, prelude::*};
use core::ops::{BitAnd, BitAndAssign};
#[allow(clippy::suspicious_op_assign_impl)]
impl<P: Precision + WordType<BITS>, const BITS: usize> BitAndAssign<Self> for HyperLogLog<P, BITS> {
#[inline(always)]
/// Computes intersection between HLL counters.
///
/// # Caveats
/// Please be advised that HLL are not designed to compute intersections such as the
/// one estimated by this operation. The resulting set will most likely be an overestimation of
/// the real intersection. Operate with caution.
///
/// # Implementation details
/// This operation is implemented by computing the minimum register-wise of the
/// two HLL counters. This results in an estimation of the intersection because
/// we obtain a new HLL counter that at most contain the elements present in both
/// HLL counters.
///
/// # Example
///
/// ```rust
/// # use hyperloglog_rs::prelude::*;
/// # use core::ops::BitAndAssign;
///
/// let mut hll = HyperLogLog::<Precision8, 6>::default();
/// hll.insert(1u8);
///
/// let mut hll2 = HyperLogLog::<Precision8, 6>::default();
/// hll2.insert(2u8);
///
/// hll.bitand_assign(hll2);
///
/// assert!(hll.estimate_cardinality() < 0.1, "The cardinality is {}, we were expecting 0.", hll.estimate_cardinality());
///
/// let mut hll = HyperLogLog::<Precision8, 6>::default();
/// hll.insert(1u8);
///
/// let mut hll2 = HyperLogLog::<Precision8, 6>::default();
/// hll2.insert(1u8);
///
/// hll.bitand_assign(hll2);
///
/// assert!(hll.estimate_cardinality() > 1.0 - 0.1, "The cardinality is {}, we were expecting 1.", hll.estimate_cardinality());
/// assert!(hll.estimate_cardinality() < 1.0 + 0.1, "The cardinality is {}, we were expecting 1.", hll.estimate_cardinality());
///
/// let mut hll3 = HyperLogLog::<Precision16, 6>::default();
/// hll3.insert(3u8);
/// hll3.insert(5u8);
///
/// let mut hll4 = HyperLogLog::<Precision16, 6>::default();
/// hll4.insert(5u8);
/// hll4.insert(6u8);
///
/// hll3.bitand_assign(hll4);
///
/// assert!(hll3.estimate_cardinality() > 1.0 - 0.1, "Expected a value equal to around 1, got {}", hll3.estimate_cardinality());
/// assert!(hll3.estimate_cardinality() < 1.0 + 0.1, "Expected a value equal to around 1, got {}", hll3.estimate_cardinality());
/// ```
fn bitand_assign(&mut self, rhs: Self) {
self.bitand_assign(&rhs)
}
}
#[allow(clippy::suspicious_op_assign_impl)]
impl<P: Precision + WordType<BITS>, const BITS: usize> BitAndAssign<&Self>
for HyperLogLog<P, BITS>
{
#[inline(always)]
/// Computes intersection between HLL counters.
///
/// # Caveats
/// Please be advised that HLL are not designed to compute intersections such as the
/// one estimated by this operation. The resulting set will most likely be an overestimation of
/// the real intersection. Operate with caution.
///
/// # Implementation details
/// This operation is implemented by computing the minimum register-wise of the
/// two HLL counters. This results in an estimation of the intersection because
/// we obtain a new HLL counter that at most contain the elements present in both
/// HLL counters.
///
/// # Example
///
/// ```rust
/// # use hyperloglog_rs::prelude::*;
/// # use core::ops::BitAndAssign;
///
/// let mut hll = HyperLogLog::<Precision8, 6>::default();
/// hll.insert(1u8);
///
/// let mut hll2 = HyperLogLog::<Precision8, 6>::default();
/// hll2.insert(2u8);
///
/// hll.bitand_assign(&hll2);
///
/// assert!(hll.estimate_cardinality() < 0.1, "The cardinality is {}, we were expecting 0.", hll.estimate_cardinality());
///
/// let mut hll = HyperLogLog::<Precision8, 6>::default();
/// hll.insert(1u8);
///
/// let mut hll2 = HyperLogLog::<Precision8, 6>::default();
/// hll2.insert(1u8);
///
/// hll.bitand_assign(&hll2);
///
/// assert!(hll.estimate_cardinality() > 1.0 - 0.1, "The cardinality is {}, we were expecting 1.", hll.estimate_cardinality());
/// assert!(hll.estimate_cardinality() < 1.0 + 0.1, "The cardinality is {}, we were expecting 1.", hll.estimate_cardinality());
///
/// let mut hll3 = HyperLogLog::<Precision16, 6>::default();
/// hll3.insert(3u8);
/// hll3.insert(5u8);
/// hll3.insert(6u8);
///
/// let mut hll4 = HyperLogLog::<Precision16, 6>::default();
/// hll4.insert(5u8);
/// hll4.insert(6u8);
///
/// hll3.bitand_assign(&hll4);
///
/// assert!(hll3.estimate_cardinality() > 2.0 - 0.1, "Expected a value equal to around 2, got {}", hll3.estimate_cardinality());
/// assert!(hll3.estimate_cardinality() < 2.0 + 0.1, "Expected a value equal to around 2, got {}", hll3.estimate_cardinality());
/// ```
///
/// Another example is that, if we allocate two example vectors which we will
/// use to populate both two sets and the two HyperLogLog counter. All elements
/// in the intersection of the two sets must also appear in the intersection of
/// the two HyperLogLog counters. Usually, the problem is that it may over-estimate
/// the cardinality of the intersection.
///
/// ```rust
/// # use hyperloglog_rs::prelude::*;
/// # use core::ops::BitAndAssign;
///
/// let first_vec: Vec<u64> = vec![1, 2, 3, 4, 4, 5, 6, 6, 7, 8];
/// let second_vec: Vec<u64> = vec![5, 6, 7, 8, 8, 9, 9, 10, 11, 11, 12];
///
/// let first_set = first_vec.iter().collect::<std::collections::HashSet<_>>();
/// let second_set = second_vec.iter().collect::<std::collections::HashSet<_>>();
///
/// let mut hll1 = HyperLogLog::<Precision8, 6>::default();
/// let mut hll2 = HyperLogLog::<Precision8, 6>::default();
///
/// for element in first_vec.iter() {
/// hll1.insert(element);
/// }
///
/// for element in second_vec.iter() {
/// hll2.insert(element);
/// }
///
/// let mut hll_intersection = hll1.clone();
/// hll_intersection &= &hll2;
///
/// let intersection = first_set.intersection(&second_set).collect::<std::collections::HashSet<_>>();
///
/// assert!(hll_intersection.estimate_cardinality() >= intersection.len() as f32 * 0.9 &&
/// hll_intersection.estimate_cardinality() <= intersection.len() as f32 * 1.1);
///
/// for element in intersection.iter() {
/// assert!(hll_intersection.may_contain(element));
/// }
///
/// ```
///
fn bitand_assign(&mut self, rhs: &Self) {
self.number_of_zero_registers = P::NumberOfZeros::ZERO;
for (left_word, mut right_word) in self
.words
.iter_elements_mut()
.zip(rhs.words.into_iter_elements())
{
let mut left_word_copy = *left_word;
for i in 0..Self::NUMBER_OF_REGISTERS_IN_WORD {
let mut left_register = left_word_copy & Self::LOWER_REGISTER_MASK;
let right_register = right_word & Self::LOWER_REGISTER_MASK;
left_register = (left_register).min(right_register);
*left_word &= !(Self::LOWER_REGISTER_MASK << (i * BITS));
*left_word |= left_register << (i * BITS);
self.number_of_zero_registers +=
P::NumberOfZeros::reverse((left_register == 0) as usize);
left_word_copy >>= BITS;
right_word >>= BITS;
}
}
self.number_of_zero_registers -=
P::NumberOfZeros::reverse(Self::get_number_of_padding_registers());
}
}
impl<P: Precision + WordType<BITS>, const BITS: usize> BitAnd<Self> for HyperLogLog<P, BITS> {
type Output = Self;
#[inline(always)]
/// Computes the intersection between two HyperLogLog counters of the same precision and number of bits per register.
///
/// # Caveats
/// Please be advised that HLL are not designed to compute intersections such as the
/// one estimated by this operation. The resulting set will most likely be an overestimation of
/// the real intersection. Operate with caution.
///
/// # Implementation details
/// This operation is implemented by computing the minimum register-wise of the
/// two HLL counters. This results in an estimation of the intersection because
/// we obtain a new HLL counter that at most contain the elements present in both
/// HLL counters.
///
/// # Example
///
/// ```rust
/// # use hyperloglog_rs::prelude::*;
/// let mut hll1 = HyperLogLog::<Precision14, 5>::default();
/// hll1.insert(&1);
/// hll1.insert(&2);
///
/// let mut hll2 = HyperLogLog::<Precision14, 5>::default();
/// hll2.insert(&2);
/// hll2.insert(&3);
///
/// let hll_intersection = hll1 & hll2;
///
/// assert!(hll_intersection.estimate_cardinality() >= 1.0_f32 * 0.9 &&
/// hll_intersection.estimate_cardinality() <= 1.0_f32 * 1.1);
/// ```
///
/// Executing the intersection between a set and an empty set
/// should result in an empty set.
///
/// ```rust
/// # use hyperloglog_rs::prelude::*;
/// let mut hll1 = HyperLogLog::<Precision14, 5>::default();
/// hll1.insert(&1);
/// hll1.insert(&2);
///
/// let hll_intersection = hll1.clone() & HyperLogLog::<Precision14, 5>::default();
/// assert_eq!(
/// HyperLogLog::<Precision14, 5>::default(),
/// hll_intersection,
/// concat!(
/// "The cardinality of the intersection should ",
/// "be the same as the empty test."
/// )
/// );
/// ```
///
/// We can create the HLL counters from array from registers,
/// so to be able to check that everything works as expected.
///
/// ```rust
/// # use hyperloglog_rs::prelude::*;
///
/// let first_registers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16];
/// let second_registers = [9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 19];
/// let expected = [9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 11, 12, 13, 14, 15, 19];
///
/// let mut hll1 = HyperLogLog::<Precision4, 5>::from_registers(&first_registers);
/// let mut hll2 = HyperLogLog::<Precision4, 5>::from_registers(&second_registers);
/// let intersection = hll1 | hll2;
///
/// assert_eq!(intersection.get_registers(), expected, "The registers are not the expected ones, got {:?} instead of {:?}.", intersection.get_registers(), expected);
/// ```
///
fn bitand(mut self, rhs: Self) -> Self {
self.bitand_assign(rhs);
self
}
}
impl<P: Precision + WordType<BITS>, const BITS: usize> BitAnd<&Self> for HyperLogLog<P, BITS> {
type Output = Self;
#[inline(always)]
/// Computes the intersection between two HyperLogLog counters of the same precision and number of bits per register.
///
/// # Caveats
/// Please be advised that HLL are not designed to compute intersections such as the
/// one estimated by this operation. The resulting set will most likely be an overestimation of
/// the real intersection. Operate with caution.
///
/// # Implementation details
/// This operation is implemented by computing the minimum register-wise of the
/// two HLL counters. This results in an estimation of the intersection because
/// we obtain a new HLL counter that at most contain the elements present in both
/// HLL counters.
///
/// # Example
///
/// ```rust
/// # use hyperloglog_rs::prelude::*;
/// let mut hll1 = HyperLogLog::<Precision14, 5>::default();
/// hll1.insert(&1);
/// hll1.insert(&2);
///
/// let mut hll2 = HyperLogLog::<Precision14, 5>::default();
/// hll2.insert(&2);
/// hll2.insert(&3);
///
/// let hll_intersection = hll1 | hll2;
///
/// assert!(hll_intersection.estimate_cardinality() >= 3.0_f32 * 0.9 &&
/// hll_intersection.estimate_cardinality() <= 3.0_f32 * 1.1);
/// ```
///
/// Merging a set with an empty set should not change the cardinality.
///
/// ```rust
/// # use hyperloglog_rs::prelude::*;
/// let mut hll1 = HyperLogLog::<Precision14, 5>::default();
/// hll1.insert(&1);
/// hll1.insert(&2);
///
/// let hll_intersection = hll1.clone() | HyperLogLog::<Precision14, 5>::default();
/// assert_eq!(
/// hll_intersection,
/// hll1,
/// concat!(
/// "The cardinality of the intersection should ",
/// "be the same as the cardinality of the first set."
/// )
/// );
/// ```
///
/// We can create the HLL counters from array from registers,
/// so to be able to check that everything works as expected.
///
/// ```rust
/// # use hyperloglog_rs::prelude::*;
///
/// let first_registers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16];
/// let second_registers = [9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 19];
/// let expected = [9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 11, 12, 13, 14, 15, 19];
///
/// let mut hll1 = HyperLogLog::<Precision4, 5>::from_registers(&first_registers);
/// let mut hll2 = HyperLogLog::<Precision4, 5>::from_registers(&second_registers);
/// let intersection = hll1 | &hll2;
///
/// assert_eq!(intersection.get_registers(), expected, "The registers are not the expected ones, got {:?} instead of {:?}.", intersection.get_registers(), expected);
/// ```
///
fn bitand(mut self, rhs: &Self) -> Self {
self.bitand_assign(rhs);
self
}
}