http-rate 0.1.1

rate limit for http crate types
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
#![doc=include_str!( "../README.md")]
#![allow(clippy::declare_interior_mutable_const)]

mod error;
mod gcra;
mod nanos;
mod quota;
mod snapshot;
mod state;
mod timer;

pub use error::TooManyRequests;
pub use quota::Quota;
pub use snapshot::RateSnapshot;

use std::{
    net::{IpAddr, SocketAddr},
    sync::Arc,
};

use http::header::{HeaderMap, HeaderName, FORWARDED};

use crate::state::{keyed::DefaultKeyedStateStore, RateLimiter};

#[derive(Clone)]
pub struct RateLimit {
    limit: Arc<RateLimiter<IpAddr, DefaultKeyedStateStore<IpAddr>>>,
}

impl RateLimit {
    /// Construct a new RateLimit with given quota.
    pub fn new(quota: Quota) -> Self {
        Self {
            limit: Arc::new(RateLimiter::hashmap(quota)),
        }
    }

    /// Rate limit [Request] based on it's [HeaderMap] state and given client [SocketAddr]
    /// "x-real-ip", "x-forwarded-for" and "forwarded" headers are checked in order start
    /// from left to determine client's socket address. Received [SocketAddr] will be used
    /// as fallback when all headers are absent or can't provide valid client address.
    ///
    /// [Request]: http::Request
    pub fn rate_limit(&self, headers: &HeaderMap, addr: &SocketAddr) -> Result<RateSnapshot, TooManyRequests> {
        let addr = maybe_x_forwarded_for(headers)
            .or_else(|| maybe_x_real_ip(headers))
            .or_else(|| maybe_forwarded(headers))
            .unwrap_or_else(|| addr.ip());
        self.limit.check_key(&addr).map_err(TooManyRequests::from)
    }
}

const X_REAL_IP: HeaderName = HeaderName::from_static("x-real-ip");
const X_FORWARDED_FOR: HeaderName = HeaderName::from_static("x-forwarded-for");

fn maybe_x_forwarded_for(headers: &HeaderMap) -> Option<IpAddr> {
    headers
        .get(X_FORWARDED_FOR)
        .and_then(|hv| hv.to_str().ok())
        .and_then(|s| s.split(',').find_map(|s| s.trim().parse().ok()))
}

fn maybe_x_real_ip(headers: &HeaderMap) -> Option<IpAddr> {
    headers
        .get(X_REAL_IP)
        .and_then(|hv| hv.to_str().ok())
        .and_then(|s| s.parse().ok())
}

fn maybe_forwarded(headers: &HeaderMap) -> Option<IpAddr> {
    headers
        .get_all(FORWARDED)
        .iter()
        .filter_map(|h| h.to_str().ok())
        .flat_map(|val| val.split(';'))
        .flat_map(|p| p.split(','))
        .map(|val| val.trim().splitn(2, '='))
        .find_map(|mut val| match (val.next(), val.next()) {
            (Some(name), Some(val)) if name.trim().eq_ignore_ascii_case("for") => {
                let val = val.trim();
                val.parse::<IpAddr>()
                    .or_else(|_| val.parse::<SocketAddr>().map(|addr| addr.ip()))
                    .ok()
            }
            _ => None,
        })
}

#[cfg(test)]
type DefaultDirectRateLimiter = RateLimiter<state::direct::NotKeyed, state::InMemoryState>;

#[cfg(test)]
mod test {
    use core::{num::NonZeroU32, time::Duration};

    use std::thread;

    use all_asserts::*;
    use http::header::HeaderValue;

    use crate::{
        error::InsufficientCapacity,
        quota::Quota,
        state::RateLimiter,
        timer::{DefaultTimer, FakeRelativeClock, Timer},
        DefaultDirectRateLimiter,
    };

    use super::*;

    #[test]
    fn forwarded_header() {
        let mut headers = HeaderMap::new();
        headers.insert(
            FORWARDED,
            HeaderValue::from_static("for =192.0.2.60;proto=http;by=203.0.113.43"),
        );
        assert_eq!(maybe_forwarded(&headers).unwrap().to_string(), "192.0.2.60");
    }

    #[test]
    fn rejects_too_many() {
        let clock = FakeRelativeClock::default();
        let lb = RateLimiter::direct_with_clock(Quota::per_second(2), &clock);
        let ms = Duration::from_millis(1);

        // use up our burst capacity (2 in the first second):
        assert!(lb.check().is_ok(), "Now: {:?}", clock.now());
        clock.advance(ms);
        assert!(lb.check().is_ok(), "Now: {:?}", clock.now());

        clock.advance(ms);
        assert!(lb.check().is_err(), "Now: {:?}", clock.now());

        // should be ok again in 1s:
        clock.advance(ms * 1000);
        assert!(lb.check().is_ok(), "Now: {:?}", clock.now());
        clock.advance(ms);
        assert!(lb.check().is_ok());

        clock.advance(ms);
        assert!(lb.check().is_err(), "{lb:?}");
    }

    #[test]
    fn all_1_identical_to_1() {
        let clock = FakeRelativeClock::default();
        let lb = RateLimiter::direct_with_clock(Quota::per_second(2), &clock);
        let ms = Duration::from_millis(1);
        let one = NonZeroU32::new(1).unwrap();

        // use up our burst capacity (2 in the first second):
        assert!(lb.check_n(one).unwrap().is_ok(), "Now: {:?}", clock.now());
        clock.advance(ms);
        assert!(lb.check_n(one).unwrap().is_ok(), "Now: {:?}", clock.now());

        clock.advance(ms);
        assert!(lb.check_n(one).unwrap().is_err(), "Now: {:?}", clock.now());

        // should be ok again in 1s:
        clock.advance(ms * 1000);
        assert!(lb.check_n(one).unwrap().is_ok(), "Now: {:?}", clock.now());
        clock.advance(ms);
        assert!(lb.check_n(one).unwrap().is_ok());

        clock.advance(ms);
        assert!(lb.check_n(one).unwrap().is_err(), "{lb:?}");
    }

    #[test]
    fn never_allows_more_than_capacity_all() {
        let clock = FakeRelativeClock::default();
        let lb = RateLimiter::direct_with_clock(Quota::per_second(4), &clock);
        let ms = Duration::from_millis(1);

        let num = NonZeroU32::new(2).unwrap();

        // Use up the burst capacity:
        assert!(lb.check_n(num).unwrap().is_ok());
        assert!(lb.check_n(num).unwrap().is_ok());

        clock.advance(ms);
        assert!(lb.check_n(num).unwrap().is_err());

        // should be ok again in 1s:
        clock.advance(ms * 1000);
        assert!(lb.check_n(num).unwrap().is_ok());
        clock.advance(ms);
        assert!(lb.check_n(num).unwrap().is_ok());

        clock.advance(ms);
        assert!(lb.check_n(num).unwrap().is_err(), "{:?}", lb);
    }

    #[test]
    fn rejects_too_many_all() {
        let clock = FakeRelativeClock::default();
        let lb = RateLimiter::direct_with_clock(Quota::per_second(5), &clock);
        let ms = Duration::from_millis(1);

        let num = NonZeroU32::new(15).unwrap();

        // Should not allow the first 15 cells on a capacity 5 bucket:
        assert!(lb.check_n(num).is_err());

        // After 3 and 20 seconds, it should not allow 15 on that bucket either:
        clock.advance(ms * 3 * 1000);
        assert!(lb.check_n(num).is_err());
    }

    #[test]
    fn all_capacity_check_rejects_excess() {
        let clock = FakeRelativeClock::default();
        let lb = RateLimiter::direct_with_clock(Quota::per_second(5), &clock);

        assert_eq!(Err(InsufficientCapacity(5)), lb.check_n(NonZeroU32::new(15).unwrap()));
        assert_eq!(Err(InsufficientCapacity(5)), lb.check_n(NonZeroU32::new(6).unwrap()));
        assert_eq!(Err(InsufficientCapacity(5)), lb.check_n(NonZeroU32::new(7).unwrap()));
    }

    #[test]
    fn correct_wait_time() {
        let clock = FakeRelativeClock::default();
        // Bucket adding a new element per 200ms:
        let lb = RateLimiter::direct_with_clock(Quota::per_second(5), &clock);
        let ms = Duration::from_millis(1);
        let mut conforming = 0;
        for _i in 0..20 {
            clock.advance(ms);
            let res = lb.check();
            match res {
                Ok(_) => {
                    conforming += 1;
                }
                Err(wait) => {
                    clock.advance(wait.wait_time_from(clock.now()));
                    assert!(lb.check().is_ok());
                    conforming += 1;
                }
            }
        }
        assert_eq!(20, conforming);
    }

    #[test]
    fn actual_threadsafety() {
        use crossbeam;

        let clock = FakeRelativeClock::default();
        let lim = RateLimiter::direct_with_clock(Quota::per_second(20), &clock);
        let ms = Duration::from_millis(1);

        crossbeam::scope(|scope| {
            for _i in 0..20 {
                scope.spawn(|_| {
                    assert!(lim.check().is_ok());
                });
            }
        })
        .unwrap();

        clock.advance(ms * 2);
        assert!(lim.check().is_err());
        clock.advance(ms * 998);
        assert!(lim.check().is_ok());
    }

    #[test]
    fn default_direct() {
        let limiter = RateLimiter::direct_with_clock(Quota::per_second(20), &DefaultTimer);
        assert!(limiter.check().is_ok());
    }

    #[test]
    fn stresstest_large_quotas() {
        use std::{sync::Arc, thread};

        let quota = Quota::per_second(1_000_000_001);
        let rate_limiter = Arc::new(RateLimiter::direct(quota));

        fn rlspin(rl: Arc<DefaultDirectRateLimiter>) {
            for _ in 0..1_000_000 {
                rl.check().map_err(|e| dbg!(e)).unwrap();
            }
        }

        let rate_limiter2 = rate_limiter.clone();
        thread::spawn(move || {
            rlspin(rate_limiter2);
        });
        rlspin(rate_limiter);
    }

    const KEYS: &[u32] = &[1u32, 2u32];

    #[test]
    fn accepts_first_cell() {
        let clock = FakeRelativeClock::default();
        let lb = RateLimiter::hashmap_with_clock(Quota::per_second(5), &clock);
        for key in KEYS {
            assert!(lb.check_key(&key).is_ok(), "key {:?}", key);
        }
    }

    use crate::state::keyed::HashMapStateStore;
    use core::hash::Hash;

    fn retained_keys<T: Clone + Hash + Eq + Copy + Ord>(
        limiter: RateLimiter<T, HashMapStateStore<T>, FakeRelativeClock>,
    ) -> Vec<T> {
        let state = limiter.into_state_store();
        let map = state.lock().unwrap();
        let mut keys: Vec<T> = map.keys().copied().collect();
        keys.sort();
        keys
    }

    #[test]
    fn expiration() {
        let clock = FakeRelativeClock::default();
        let ms = Duration::from_millis(1);

        let make_bucket = || {
            let lim = RateLimiter::hashmap_with_clock(Quota::per_second(1), &clock);
            lim.check_key(&"foo").unwrap();
            clock.advance(ms * 200);
            lim.check_key(&"bar").unwrap();
            clock.advance(ms * 600);
            lim.check_key(&"baz").unwrap();
            lim
        };
        let keys = &["bar", "baz", "foo"];

        // clean up all keys that are indistinguishable from unoccupied keys:
        let lim_shrunk = make_bucket();
        lim_shrunk.retain_recent();
        assert_eq!(retained_keys(lim_shrunk), keys);

        let lim_later = make_bucket();
        clock.advance(ms * 1200);
        lim_later.retain_recent();
        assert_eq!(retained_keys(lim_later), vec!["bar", "baz"]);

        let lim_later = make_bucket();
        clock.advance(ms * (1200 + 200));
        lim_later.retain_recent();
        assert_eq!(retained_keys(lim_later), vec!["baz"]);

        let lim_later = make_bucket();
        clock.advance(ms * (1200 + 200 + 600));
        lim_later.retain_recent();
        assert_eq!(retained_keys(lim_later), Vec::<&str>::new());
    }

    #[test]
    fn hashmap_length() {
        let lim = RateLimiter::hashmap(Quota::per_second(1));
        assert_eq!(lim.len(), 0);
        assert!(lim.is_empty());

        lim.check_key(&"foo").unwrap();
        assert_eq!(lim.len(), 1);
        assert!(!lim.is_empty(),);

        lim.check_key(&"bar").unwrap();
        assert_eq!(lim.len(), 2);
        assert!(!lim.is_empty());

        lim.check_key(&"baz").unwrap();
        assert_eq!(lim.len(), 3);
        assert!(!lim.is_empty());
    }

    #[test]
    fn hashmap_shrink_to_fit() {
        let clock = FakeRelativeClock::default();
        // a steady rate of 3ms between elements:
        let lim = RateLimiter::hashmap_with_clock(Quota::per_second(20), &clock);
        let ms = Duration::from_millis(1);

        assert!(lim
            .check_key_n(&"long-lived".to_string(), NonZeroU32::new(10).unwrap())
            .unwrap()
            .is_ok(),);
        assert!(lim.check_key(&"short-lived".to_string()).is_ok());

        // Move the clock forward far enough that the short-lived key gets dropped:
        clock.advance(ms * 300);
        lim.retain_recent();
        lim.shrink_to_fit();

        assert_eq!(lim.len(), 1);
    }

    fn resident_memory_size() -> i64 {
        let mut out: libc::rusage = unsafe { std::mem::zeroed() };
        assert!(unsafe { libc::getrusage(libc::RUSAGE_SELF, &mut out) } == 0);
        out.ru_maxrss
    }

    const LEAK_TOLERANCE: i64 = 1024 * 1024 * 10;

    struct LeakCheck {
        usage_before: i64,
        n_iter: usize,
    }

    impl Drop for LeakCheck {
        fn drop(&mut self) {
            let usage_after = resident_memory_size();
            assert_le!(usage_after, self.usage_before + LEAK_TOLERANCE);
        }
    }

    impl LeakCheck {
        fn new(n_iter: usize) -> Self {
            LeakCheck {
                n_iter,
                usage_before: resident_memory_size(),
            }
        }
    }

    #[test]
    fn memleak_gcra() {
        let bucket = RateLimiter::direct(Quota::per_second(1_000_000));

        let leak_check = LeakCheck::new(500_000);

        for _i in 0..leak_check.n_iter {
            drop(bucket.check());
        }
    }

    #[test]
    fn memleak_gcra_multi() {
        let bucket = RateLimiter::direct(Quota::per_second(1_000_000));
        let leak_check = LeakCheck::new(500_000);

        for _i in 0..leak_check.n_iter {
            drop(bucket.check_n(NonZeroU32::new(2).unwrap()));
        }
    }

    #[test]
    fn memleak_gcra_threaded() {
        let bucket = Arc::new(RateLimiter::direct(Quota::per_second(1_000_000)));
        let leak_check = LeakCheck::new(5_000);

        for _i in 0..leak_check.n_iter {
            let bucket = Arc::clone(&bucket);
            thread::spawn(move || {
                assert!(bucket.check().is_ok());
            })
            .join()
            .unwrap();
        }
    }

    #[test]
    fn memleak_keyed() {
        let bucket = RateLimiter::keyed(Quota::per_second(50));

        let leak_check = LeakCheck::new(500_000);

        for i in 0..leak_check.n_iter {
            drop(bucket.check_key(&(i % 1000)));
        }
    }
}