hpo 0.11.0

Human Phenotype Ontology Similarity
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
use core::fmt::Debug;
use std::cmp::PartialEq;
use std::collections::HashSet;
use std::convert::TryFrom;
use std::fmt::Display;
use std::hash::Hash;

use tracing::error;

use crate::annotations::AnnotationId;
use crate::set::HpoSet;
use crate::term::HpoGroup;
use crate::u32_from_bytes;
use crate::HpoError;
use crate::HpoResult;
use crate::HpoTermId;
use crate::Ontology;

/// A set of genes
///
/// The set does not contain [`Gene`]s itself, but only their [`GeneId`]s.
/// Currently implemented using [`HashSet`] but any other implementation
/// should work as well given that each [`GeneId`] must appear only once
/// and it provides an iterator of [`GeneId`]
pub type Genes = HashSet<GeneId>;

/// A unique identifier for a [`Gene`]
///
/// This value can - in theory - represent any numerical unique value.
/// When using the default JAX provided masterdata, it represents
/// the NCBI Gene ID
#[derive(Clone, Copy, Default, Debug, Hash, PartialEq, PartialOrd, Eq, Ord)]
pub struct GeneId {
    inner: u32,
}

impl AnnotationId for GeneId {
    /// Convert `self` to `u32`
    fn as_u32(&self) -> u32 {
        self.inner
    }
}

impl TryFrom<&str> for GeneId {
    type Error = HpoError;
    fn try_from(value: &str) -> Result<Self, Self::Error> {
        Ok(GeneId {
            inner: value.parse::<u32>()?,
        })
    }
}

impl From<u32> for GeneId {
    fn from(inner: u32) -> Self {
        GeneId { inner }
    }
}

impl Display for GeneId {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(f, "NCBI-GeneID:{}", self.inner)
    }
}

/// A single gene
///
/// A gene has a unique [`GeneId`] and a name (symbol) and is
/// connected to a set of HPO terms
#[derive(Default, Debug, Clone)]
pub struct Gene {
    id: GeneId,
    name: String,
    hpos: HpoGroup,
}

impl Gene {
    /// Initializes a new Gene
    ///
    /// This method should rarely, if ever, be used directly. The
    /// preferred way to create new genes is through [`Builder::annotate_gene`](`crate::builder::Builder::annotate_gene`)
    /// to ensure that each gene exists only once.
    pub fn new(id: GeneId, name: &str) -> Gene {
        Gene {
            id,
            name: name.to_string(),
            hpos: HpoGroup::default(),
        }
    }

    /// Initializes a new Gene from `str` values
    ///
    /// This method should rarely, if ever, be used directly. The
    /// preferred way to create new genes is through [`Builder::annotate_gene`](`crate::builder::Builder::annotate_gene`)
    /// to ensure that each gene exists only once.
    ///
    /// # Errors
    ///
    /// If the id is not a correct `GeneId`, returns [`HpoError::ParseIntError`]
    pub fn from_parts(id: &str, name: &str) -> HpoResult<Gene> {
        Ok(Gene {
            id: GeneId::try_from(id)?,
            name: name.to_string(),
            hpos: HpoGroup::default(),
        })
    }

    /// The unique [`GeneId`] of the gene, most likely the NCBI Gene ID
    pub fn id(&self) -> &GeneId {
        &self.id
    }

    /// The name of the gene (gene symbol)
    pub fn name(&self) -> &str {
        &self.name
    }

    /// The gene symbol (identical to [`Gene::id`])
    pub fn symbol(&self) -> &str {
        &self.name
    }

    /// The set of connected HPO terms
    pub fn hpo_terms(&self) -> &HpoGroup {
        &self.hpos
    }

    /// Returns a binary representation of the `Gene`
    ///
    /// The binary layout is defined as:
    ///
    /// | Byte offset | Number of bytes | Description |
    /// | --- | --- | --- |
    /// | 0 | 4 | The total length of the binary data blob as big-endian `u32` |
    /// | 4 | 4 | The Gene ID as big-endian `u32` |
    /// | 8 | 1 | The length of the Gene Name / Symbol (converted to a u8 vector) as a `u8` |
    /// | 9 | n | The Gene name/symbol as u8 vector. If the name has more than 255 bytes, it is trimmed to 255 |
    /// | 9 + n | 4 | The number of associated HPO terms as big-endian `u32` |
    /// | 13 + n | x * 4 | The HPO Term IDs of the associated terms, each encoded as big-endian `u32` |
    ///
    /// # Examples
    ///
    /// ```
    /// use hpo::annotations::Gene;
    ///
    /// let mut gene = Gene::from_parts("123", "FooBar").unwrap();
    /// let bytes = gene.as_bytes();
    ///
    /// assert_eq!(bytes.len(), 4 + 4 + 1 + 6 + 4);
    /// assert_eq!(bytes[4..8], [0u8, 0u8, 0u8, 123u8]);
    /// assert_eq!(bytes[8], 6u8);
    /// ```
    pub fn as_bytes(&self) -> Vec<u8> {
        fn usize_to_u32(n: usize) -> u32 {
            n.try_into().expect("unable to convert {n} to u32")
        }
        let name = self.name().as_bytes();
        let name_length = std::cmp::min(name.len(), 255);
        let size = 4 + 4 + 1 + name_length + 4 + self.hpos.len() * 4;

        let mut res = Vec::new();

        // 4 bytes for total length
        res.append(&mut usize_to_u32(size).to_be_bytes().to_vec());

        // 4 bytes for Gene-ID
        res.append(&mut self.id.to_be_bytes().to_vec());

        // 1 byte for Length of Gene Name (can't be longer than 255 bytes)
        // casting is safe, since name_length is < 256
        #[allow(clippy::cast_possible_truncation)]
        res.push(name_length as u8);

        // Gene name/symbol (up to 255 bytes)
        for c in name.iter().take(255) {
            res.push(*c);
        }

        // 4 bytes for number of HPO terms
        res.append(&mut usize_to_u32(self.hpos.len()).to_be_bytes().to_vec());

        // HPO terms
        res.append(&mut self.hpos.as_bytes());

        res
    }

    /// Returns an [`HpoSet`] from the `Gene`
    pub fn to_hpo_set<'a>(&self, ontology: &'a Ontology) -> HpoSet<'a> {
        HpoSet::new(ontology, self.hpos.clone())
    }

    /// Connect another [HPO term](`crate::HpoTerm`) to the gene
    ///
    /// # Note
    ///
    /// This method does **not** add the [`Gene`] to the [HPO term](`crate::HpoTerm`).
    /// Clients should not use this method, unless they are creating their own Ontology.
    pub fn add_term<I: Into<HpoTermId>>(&mut self, term_id: I) -> bool {
        self.hpos.insert(term_id)
    }
}

impl PartialEq for Gene {
    fn eq(&self, other: &Gene) -> bool {
        self.id == other.id
    }
}
impl Eq for Gene {}

impl TryFrom<&[u8]> for Gene {
    type Error = HpoError;
    /// Returns a [`Gene`] from a bytes vector
    ///
    /// The byte layout for this method is defined in
    /// [`Gene::as_bytes`]
    ///
    /// # Examples
    ///
    /// ```
    /// use hpo::annotations::{Gene, GeneId};
    ///
    /// let bytes = vec![
    ///     0u8, 0u8, 0u8, 19u8, // Total size of Blop
    ///     0u8, 0u8, 0u8, 123u8, // ID of the gene => 123
    ///     6u8, // Length of gene symbol
    ///     b'F', b'o', b'o', b'b', b'a', b'r', // Foobar
    ///     0u8, 0u8, 0u8, 0u8  // Number of associated HPO Terms => 0
    /// ];
    /// let gene = Gene::try_from(&bytes[..]).unwrap();
    ///
    /// assert_eq!(gene.name(), "Foobar");
    /// assert_eq!(gene.id(), &GeneId::from(123u32));
    /// ```
    fn try_from(bytes: &[u8]) -> Result<Self, Self::Error> {
        // minimum length for a Gene without name and no HPO terms
        // This check is important because we're accessing the bytes
        // for size and ID directly and don't want to panic
        if bytes.len() < 4 + 4 + 1 + 4 {
            error!("Too few bytes for a Gene");
            return Err(HpoError::ParseBinaryError);
        }
        let total_len = u32_from_bytes(&bytes[0..]) as usize;

        if bytes.len() != total_len {
            error!(
                "Too few bytes to build gene. Expected {}, received {}",
                total_len,
                bytes.len()
            );
            return Err(HpoError::ParseBinaryError);
        }

        let id = u32_from_bytes(&bytes[4..]);
        let name_len = bytes[8] as usize;

        // Minimum length considering the name
        if bytes.len() < 13 + name_len {
            error!("Too few bytes for an Gene (including the name)");
            return Err(HpoError::ParseBinaryError);
        }

        let Ok(name) = String::from_utf8(bytes[9..9 + name_len].to_vec()) else {
            error!("Unable to parse the name of the Gene");
            return Err(HpoError::ParseBinaryError);
        };

        let mut gene = Gene::new(id.into(), &name);

        let mut idx_terms = 9 + name_len;
        let n_terms = u32_from_bytes(&bytes[idx_terms..]);

        if bytes.len() < 13 + name_len + n_terms as usize * 4 {
            error!(
                "Too few bytes in {}. {} terms, but {} bytes",
                name,
                n_terms,
                bytes.len()
            );
            return Err(HpoError::ParseBinaryError);
        }

        idx_terms += 4;
        for _ in 0..n_terms {
            let term_id = HpoTermId::from([
                bytes[idx_terms],
                bytes[idx_terms + 1],
                bytes[idx_terms + 2],
                bytes[idx_terms + 3],
            ]);
            idx_terms += 4;

            gene.add_term(term_id);
        }

        if idx_terms == total_len && idx_terms == bytes.len() {
            Ok(gene)
        } else {
            error!(
                "The length of the bytes blob did not match: {} vs {}",
                total_len, idx_terms
            );
            Err(HpoError::ParseBinaryError)
        }
    }
}

impl Hash for Gene {
    fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
        self.id.hash(state);
    }
}

/// [`Gene`] Iterator
pub struct GeneIterator<'a> {
    ontology: &'a Ontology,
    genes: std::collections::hash_set::Iter<'a, GeneId>,
}

impl<'a> GeneIterator<'a> {
    /// Initialize a new [`GeneIterator`]
    ///
    /// This method requires the [`Ontology`] as a parameter since
    /// the actual [`Gene`] entities are stored in it and not in [`Genes`]
    /// itself
    pub fn new(genes: &'a Genes, ontology: &'a Ontology) -> Self {
        GeneIterator {
            genes: genes.iter(),
            ontology,
        }
    }
}

impl<'a> std::iter::Iterator for GeneIterator<'a> {
    type Item = &'a Gene;
    fn next(&mut self) -> Option<Self::Item> {
        match self.genes.next() {
            Some(gene_id) => Some(self.ontology.gene(gene_id).unwrap()),
            None => None,
        }
    }
}

impl Debug for GeneIterator<'_> {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(f, "GeneIterator")
    }
}

#[cfg(test)]
mod test {
    use super::*;

    #[test]
    fn gene_to_binary() {
        let mut gene = Gene::from_parts("123", "FooBar").unwrap();
        gene.add_term(66u32);
        gene.add_term(77u32);

        let bin = gene.as_bytes();

        assert_eq!(bin.len(), 4 + 4 + 1 + 6 + 4 + 8);
    }

    #[test]
    fn gene_to_and_from_binary() {
        let mut gene = Gene::from_parts("123", "FooBar").unwrap();
        gene.add_term(66u32);
        gene.add_term(77u32);

        let bin = gene.as_bytes();

        let gene2: Gene = bin[..].try_into().unwrap();

        assert_eq!(gene.name(), gene2.name());
        assert_eq!(gene.id(), gene2.id());
        assert_eq!(gene.hpo_terms().len(), gene2.hpo_terms().len());
        for (a, b) in gene.hpo_terms().iter().zip(gene2.hpo_terms().iter()) {
            assert_eq!(a, b);
        }
    }

    #[test]
    fn gene_with_non_utf8_name() {
        let mut gene = Gene::new(123u32.into(), "Foo😀Bar");
        gene.add_term(66u32);
        gene.add_term(77u32);

        let bin = gene.as_bytes();

        // the smiley uses 4 bytes, so the name length is 10
        assert_eq!(bin.len(), 4 + 4 + 1 + 10 + 4 + 8);

        let gene2 = Gene::try_from(&bin[..]).expect("Can't build Gene");

        assert_eq!(gene.name(), gene2.name());
        assert_eq!(gene.id(), gene2.id());
        assert_eq!(gene.hpo_terms().len(), gene2.hpo_terms().len());
        for (a, b) in gene.hpo_terms().iter().zip(gene2.hpo_terms().iter()) {
            assert_eq!(a, b);
        }
    }

    #[test]
    fn gene_with_long_name() {
        let name = "Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.";
        let mut gene = Gene::new(123u32.into(), name);
        gene.add_term(66u32);
        gene.add_term(77u32);

        let bin = gene.as_bytes();

        let gene2 = Gene::try_from(&bin[..]).expect("Can't build Disease");

        assert_ne!(gene.name(), gene2.name());
        assert_eq!(gene.name()[0..255], gene2.name()[0..255]);
        assert_eq!(gene.id(), gene2.id());
        assert_eq!(gene.hpo_terms().len(), gene2.hpo_terms().len());
        for (a, b) in gene.hpo_terms().iter().zip(gene2.hpo_terms().iter()) {
            assert_eq!(a, b);
        }
    }

    #[test]
    fn gene_with_wrong_length() {
        let mut gene = Gene::new(123u32.into(), "foobar");
        gene.add_term(66u32);
        gene.add_term(77u32);

        let mut bin = gene.as_bytes();

        assert!(Gene::try_from(&bin[..12]).is_err());
        assert!(Gene::try_from(&bin[..18]).is_err());
        assert!(Gene::try_from(&bin[..26]).is_err());
        assert!(Gene::try_from(&bin[..27]).is_ok());

        bin.push(1);
        assert!(Gene::try_from(&bin[..27]).is_ok());
        assert!(Gene::try_from(&bin[..28]).is_err());
    }
}