extern crate generic_array;
extern crate digest;
extern crate hmac;
#[cfg(test)]
extern crate hex;
#[cfg(test)]
extern crate sha1;
#[cfg(test)]
extern crate sha2;
use std::cmp;
use digest::Digest;
use generic_array::{ArrayLength, GenericArray};
use hmac::{Hmac, Mac};
pub struct Hkdf<D>
where D: Digest,
D::OutputSize: ArrayLength<u8>
{
pub prk: GenericArray<u8, D::OutputSize>,
}
impl<D> Hkdf<D>
where D: Digest,
D::OutputSize: ArrayLength<u8>
{
pub fn new(ikm: &[u8], salt: &[u8]) -> Hkdf<D> {
let mut hmac = Hmac::<D>::new(salt).unwrap();
hmac.input(ikm);
let mut arr = GenericArray::default();
arr.copy_from_slice(&hmac.result().code());
Hkdf {
prk: arr,
}
}
pub fn derive(&mut self, info: &[u8], length: usize) -> Vec<u8> {
let mut okm = Vec::<u8>::with_capacity(length);
let mut prev = Vec::<u8>::new();
use generic_array::typenum::Unsigned;
let hmac_output_bytes = D::OutputSize::to_usize();
if length > hmac_output_bytes * 255 {
panic!("Invalid number of blocks, length too large");
}
let mut remaining = length;
let mut blocknum = 1;
while remaining > 0 {
let mut output_block = Hmac::<D>::new(&self.prk).unwrap();
let c = vec![blocknum as u8];
output_block.input(&prev);
output_block.input(info);
output_block.input(&c);
prev = output_block.result().code().to_vec();
let needed = cmp::min(remaining, hmac_output_bytes);
okm.extend(&prev[..needed]);
blocknum += 1;
remaining -= needed;
}
okm
}
}
#[cfg(test)]
mod tests {
use Hkdf;
use hex::{ToHex, FromHex};
use sha1::Sha1;
use sha2::Sha256;
struct Test<'a> {
ikm: &'a str,
salt: &'a str,
info: &'a str,
length: usize,
prk: &'a str,
okm: &'a str,
}
fn tests_sha256<'a>() -> Vec<Test<'a>> {
vec![Test { ikm: "0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b",
salt: "000102030405060708090a0b0c",
info: "f0f1f2f3f4f5f6f7f8f9",
length: 42,
prk: "077709362c2e32df0ddc3f0dc47bba6390b6c73bb50f9c3122ec844ad7c2b3e5",
okm: "3cb25f25faacd57a90434f64d0362f2a2d2d0a90cf1a5a4c5db02d56ecc4c5bf34007208d5b8\
87185865",
},
Test { ikm: "000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f202122232425\
262728292a2b2c2d2e2f303132333435363738393a3b3c3d3e3f404142434445464748494a4b\
4c4d4e4f",
salt: "606162636465666768696a6b6c6d6e6f707172737475767778797a7b7c7d7e7f80818283848\
5868788898a8b8c8d8e8f909192939495969798999a9b9c9d9e9fa0a1a2a3a4a5a6a7a8a9aa\
abacadaeaf",
info: "b0b1b2b3b4b5b6b7b8b9babbbcbdbebfc0c1c2c3c4c5c6c7c8c9cacbcccdcecfd0d1d2d3d4d\
5d6d7d8d9dadbdcdddedfe0e1e2e3e4e5e6e7e8e9eaebecedeeeff0f1f2f3f4f5f6f7f8f9fa\
fbfcfdfeff",
length: 82,
prk: "06a6b88c5853361a06104c9ceb35b45cef760014904671014a193f40c15fc244",
okm: "b11e398dc80327a1c8e7f78c596a49344f012eda2d4efad8a050cc4c19afa97c59045a99cac7\
827271cb41c65e590e09da3275600c2f09b8367793a9aca3db71cc30c58179ec3e87c14c01d5\
c1f3434f1d87",
},
Test { ikm: "0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b",
salt: "",
info: "",
length: 42,
prk: "19ef24a32c717b167f33a91d6f648bdf96596776afdb6377ac434c1c293ccb04",
okm: "8da4e775a563c18f715f802a063c5a31b8a11f5c5ee1879ec3454e5f3c738d2d9d201395faa4\
b61a96c8",
}]
}
#[test]
fn test_derive_sha256() {
let tests = tests_sha256();
for t in tests.iter() {
let ikm = &Vec::from_hex(&t.ikm).unwrap()[..];
let salt = &Vec::from_hex(&t.salt).unwrap()[..];
let info = &Vec::from_hex(&t.info).unwrap()[..];
let mut hkdf = Hkdf::<Sha256>::new(ikm, salt);
let okm = hkdf.derive(info, t.length);
assert_eq!(hkdf.prk.to_hex(), t.prk);
assert_eq!(okm.to_hex(), t.okm);
}
}
const MAX_SHA256_LENGTH: usize = 255 * (256 / 8);
#[test]
fn test_lengths() {
let mut hkdf = Hkdf::<Sha256>::new(&[], &[]);
let longest = hkdf.derive(&[], MAX_SHA256_LENGTH);
let lengths = (0..MAX_SHA256_LENGTH + 1).filter(|&len| {
len < 500 || len > MAX_SHA256_LENGTH - 10 || len % 100 == 0
});
for length in lengths {
let okm = hkdf.derive(&[], length);
assert_eq!(okm.len(), length);
assert_eq!(okm.to_hex(), longest[..length].iter().to_hex());
}
}
#[test]
fn test_max_length() {
let mut hkdf = Hkdf::<Sha256>::new(&[], &[]);
hkdf.derive(&[], MAX_SHA256_LENGTH);
}
#[test]
#[should_panic(expected="length too large")]
fn test_max_length_exceeded() {
let mut hkdf = Hkdf::<Sha256>::new(&[], &[]);
hkdf.derive(&[], MAX_SHA256_LENGTH + 1);
}
#[test]
#[should_panic]
fn test_unsupported_length() {
let mut hkdf = Hkdf::<Sha256>::new(&[], &[]);
hkdf.derive(&[], 90000);
}
fn tests_sha1<'a>() -> Vec<Test<'a>> {
vec![Test { ikm: "0b0b0b0b0b0b0b0b0b0b0b",
salt: "000102030405060708090a0b0c",
info: "f0f1f2f3f4f5f6f7f8f9",
length: 42,
prk: "9b6c18c432a7bf8f0e71c8eb88f4b30baa2ba243",
okm: "085a01ea1b10f36933068b56efa5ad81\
a4f14b822f5b091568a9cdd4f155fda2\
c22e422478d305f3f896",
},
Test { ikm: "000102030405060708090a0b0c0d0e0f\
101112131415161718191a1b1c1d1e1f\
202122232425262728292a2b2c2d2e2f\
303132333435363738393a3b3c3d3e3f\
404142434445464748494a4b4c4d4e4f",
salt: "606162636465666768696a6b6c6d6e6f\
707172737475767778797a7b7c7d7e7f\
808182838485868788898a8b8c8d8e8f\
909192939495969798999a9b9c9d9e9f\
a0a1a2a3a4a5a6a7a8a9aaabacadaeaf",
info: "b0b1b2b3b4b5b6b7b8b9babbbcbdbebf\
c0c1c2c3c4c5c6c7c8c9cacbcccdcecf\
d0d1d2d3d4d5d6d7d8d9dadbdcdddedf\
e0e1e2e3e4e5e6e7e8e9eaebecedeeef\
f0f1f2f3f4f5f6f7f8f9fafbfcfdfeff",
length: 82,
prk: "8adae09a2a307059478d309b26c4115a224cfaf6",
okm: "0bd770a74d1160f7c9f12cd5912a06eb\
ff6adcae899d92191fe4305673ba2ffe\
8fa3f1a4e5ad79f3f334b3b202b2173c\
486ea37ce3d397ed034c7f9dfeb15c5e\
927336d0441f4c4300e2cff0d0900b52\
d3b4",
},
Test { ikm: "0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b",
salt: "",
info: "",
length: 42,
prk: "da8c8a73c7fa77288ec6f5e7c297786aa0d32d01",
okm: "0ac1af7002b3d761d1e55298da9d0506\
b9ae52057220a306e07b6b87e8df21d0\
ea00033de03984d34918",
},
Test { ikm: "0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c",
salt: "", info: "",
length: 42,
prk: "2adccada18779e7c2077ad2eb19d3f3e731385dd",
okm: "2c91117204d745f3500d636a62f64f0a\
b3bae548aa53d423b0d1f27ebba6f5e5\
673a081d70cce7acfc48",
},
]
}
#[test]
fn test_derive_sha1() {
let tests = tests_sha1();
for t in tests.iter() {
let ikm = &Vec::from_hex(&t.ikm).unwrap()[..];
let salt = &Vec::from_hex(&t.salt).unwrap()[..];
let info = &Vec::from_hex(&t.info).unwrap()[..];
let mut hkdf = Hkdf::<Sha1>::new(ikm, salt);
let okm = hkdf.derive(info, t.length);
assert_eq!(hkdf.prk.to_hex(), t.prk);
assert_eq!(okm.to_hex(), t.okm);
}
}
}