hive-gpu 0.1.7

High-performance GPU acceleration for vector operations with Device Info API (Metal, CUDA, ROCm)
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
# πŸš€ Hive-GPU Integration Roadmap

**Complete roadmap for implementing CUDA, Vulkan, and native GPU backends**

## πŸ“‹ Overview

This roadmap outlines the implementation strategy for expanding `hive-gpu` v0.1.0 with comprehensive GPU backend support, including CUDA, Vulkan, and native GPU APIs.

## 🎯 Current Status (v0.1.0)

### βœ… **Implemented:**
- **Metal Native**: Complete implementation for macOS
- **Basic Structure**: CUDA and wgpu placeholders
- **Core Traits**: GpuContext, GpuVectorStorage
- **Types**: GpuVector, GpuSearchResult, HnswConfig
- **Error Handling**: Comprehensive error types
- **CI/CD**: GitHub Actions pipeline
- **Documentation**: Complete English documentation

### ⚠️ **Pending:**
- **CUDA Implementation**: Full CUDA backend
- **Vulkan Support**: Vulkan compute shaders
- **wgpu Enhancement**: Complete wgpu implementation
- **Cross-platform**: Windows/Linux native support
- **Performance**: GPU-accelerated algorithms

## πŸ—ΊοΈ Roadmap Phases

## Phase 1: CUDA Implementation 

### 🎯 **Goals:**
- Complete CUDA backend implementation
- NVIDIA GPU support for Linux/Windows
- CUDA kernels for vector operations
- Memory management and optimization

### πŸ“‹ **Tasks:**

#### **1.1 CUDA Core Implementation**
- [ ] **CUDA Context** (`src/cuda/context.rs`)
  - [ ] Device detection and initialization
  - [ ] Memory pool management
  - [ ] Stream management
  - [ ] Error handling and recovery

- [ ] **CUDA Vector Storage** (`src/cuda/vector_storage.rs`)
  - [ ] GPU memory allocation
  - [ ] Vector data management
  - [ ] Batch operations
  - [ ] Memory optimization

- [ ] **CUDA Kernels** (`src/cuda/kernels/`)
  - [ ] Cosine similarity kernel
  - [ ] Euclidean distance kernel
  - [ ] Dot product kernel
  - [ ] HNSW construction kernel
  - [ ] HNSW search kernel

#### **1.2 CUDA Memory Management**
- [ ] **Buffer Pool** (`src/cuda/buffer_pool.rs`)
  - [ ] Dynamic memory allocation
  - [ ] Memory reuse and recycling
  - [ ] Fragmentation management
  - [ ] Memory monitoring

- [ ] **VRAM Monitor** (`src/cuda/vram_monitor.rs`)
  - [ ] Memory usage tracking
  - [ ] Performance metrics
  - [ ] Memory leak detection
  - [ ] Optimization suggestions

#### **1.3 CUDA HNSW Implementation**
- [ ] **HNSW Graph** (`src/cuda/hnsw_graph.rs`)
  - [ ] Graph construction on GPU
  - [ ] Parallel edge creation
  - [ ] Graph traversal
  - [ ] Memory-efficient storage

- [ ] **CUDA Helpers** (`src/cuda/helpers.rs`)
  - [ ] Kernel launch utilities
  - [ ] Memory transfer optimization
  - [ ] Error handling utilities
  - [ ] Performance profiling

### πŸ§ͺ **Testing & Validation:**
- [ ] Unit tests for CUDA operations
- [ ] Integration tests with vectorizer
- [ ] Performance benchmarks
- [ ] Memory leak testing
- [ ] Cross-platform compatibility

### πŸ“Š **Success Metrics:**
- [ ] CUDA backend functional
- [ ] Performance > 10x CPU baseline
- [ ] Memory usage < 2GB for 100k vectors
- [ ] Zero memory leaks
- [ ] Full test coverage

---

## Phase 2: Vulkan Implementation 

### 🎯 **Goals:**
- Vulkan compute shader support
- Cross-platform GPU acceleration
- Vulkan memory management
- Compute pipeline optimization

### πŸ“‹ **Tasks:**

#### **2.1 Vulkan Core Implementation**
- [ ] **Vulkan Context** (`src/vulkan/context.rs`)
  - [ ] Instance and device creation
  - [ ] Queue family selection
  - [ ] Memory type detection
  - [ ] Extension support

- [ ] **Vulkan Vector Storage** (`src/vulkan/vector_storage.rs`)
  - [ ] Buffer management
  - [ ] Memory mapping
  - [ ] Synchronization
  - [ ] Performance optimization

#### **2.2 Vulkan Compute Shaders**
- [ ] **Shader Compilation** (`src/vulkan/shaders/`)
  - [ ] GLSL to SPIR-V compilation
  - [ ] Shader optimization
  - [ ] Cross-platform compatibility
  - [ ] Shader caching

- [ ] **Compute Pipelines** (`src/vulkan/pipelines/`)
  - [ ] Pipeline creation
  - [ ] Descriptor set management
  - [ ] Command buffer recording
  - [ ] Synchronization primitives

#### **2.3 Vulkan Kernels**
- [ ] **Similarity Kernels** (`src/vulkan/kernels/`)
  - [ ] Cosine similarity shader
  - [ ] Euclidean distance shader
  - [ ] Dot product shader
  - [ ] Batch processing shader

- [ ] **HNSW Kernels** (`src/vulkan/hnsw/`)
  - [ ] Graph construction shader
  - [ ] Graph traversal shader
  - [ ] Edge creation shader
  - [ ] Search optimization shader

#### **2.4 Vulkan Memory Management**
- [ ] **Buffer Management** (`src/vulkan/buffers.rs`)
  - [ ] Buffer allocation
  - [ ] Memory type selection
  - [ ] Buffer pooling
  - [ ] Memory optimization

- [ ] **Synchronization** (`src/vulkan/sync.rs`)
  - [ ] Fence management
  - [ ] Semaphore synchronization
  - [ ] Memory barriers
  - [ ] Pipeline barriers

### πŸ§ͺ **Testing & Validation:**
- [ ] Vulkan validation layers
- [ ] Cross-platform testing
- [ ] Performance benchmarking
- [ ] Memory usage analysis
- [ ] Shader compilation testing

### πŸ“Š **Success Metrics:**
- [ ] Vulkan backend functional
- [ ] Cross-platform compatibility
- [ ] Performance > 5x CPU baseline
- [ ] Memory usage < 1.5GB for 100k vectors
- [ ] Zero validation errors

---

## Phase 3: Native GPU APIs 

### 🎯 **Goals:**
- DirectX 12 support for Windows
- Metal Performance Shaders for macOS
- OpenCL support for cross-platform
- Native API optimization

### πŸ“‹ **Tasks:**

#### **3.1 DirectX 12 Implementation**
- [ ] **DX12 Context** (`src/dx12/context.rs`)
  - [ ] Device creation
  - [ ] Command queue management
  - [ ] Memory heap management
  - [ ] Resource management

- [ ] **DX12 Compute** (`src/dx12/compute.rs`)
  - [ ] Compute shader execution
  - [ ] Resource binding
  - [ ] Pipeline state objects
  - [ ] Command list recording

#### **3.2 Metal Performance Shaders**
- [ ] **MPS Integration** (`src/mps/context.rs`)
  - [ ] MPS device creation
  - [ ] MPS graph construction
  - [ ] MPS kernel execution
  - [ ] Memory management

- [ ] **MPS Kernels** (`src/mps/kernels/`)
  - [ ] MPS matrix operations
  - [ ] MPS reduction operations
  - [ ] MPS convolution
  - [ ] MPS custom kernels

#### **3.3 OpenCL Support**
- [ ] **OpenCL Context** (`src/opencl/context.rs`)
  - [ ] Platform and device selection
  - [ ] Context creation
  - [ ] Command queue management
  - [ ] Memory management

- [ ] **OpenCL Kernels** (`src/opencl/kernels/`)
  - [ ] Kernel compilation
  - [ ] Kernel execution
  - [ ] Memory optimization
  - [ ] Performance tuning

### πŸ§ͺ **Testing & Validation:**
- [ ] Platform-specific testing
- [ ] Performance comparison
- [ ] Memory usage analysis
- [ ] Compatibility testing
- [ ] Stress testing

### πŸ“Š **Success Metrics:**
- [ ] All native APIs functional
- [ ] Platform-specific optimization
- [ ] Performance > 15x CPU baseline
- [ ] Memory usage < 1GB for 100k vectors
- [ ] Full platform coverage

---

## Phase 4: Advanced Features 

### 🎯 **Goals:**
- Multi-GPU support
- Distributed computing
- Advanced algorithms
- Performance optimization

### πŸ“‹ **Tasks:**

#### **4.1 Multi-GPU Support**
- [ ] **GPU Detection** (`src/multi_gpu/detector.rs`)
  - [ ] Multiple GPU detection
  - [ ] GPU capability assessment
  - [ ] Load balancing
  - [ ] Failover support

- [ ] **Distributed Storage** (`src/multi_gpu/storage.rs`)
  - [ ] Vector distribution
  - [ ] Cross-GPU communication
  - [ ] Load balancing
  - [ ] Fault tolerance

#### **4.2 Advanced Algorithms**
- [ ] **Quantization** (`src/quantization/`)
  - [ ] Scalar quantization
  - [ ] Product quantization
  - [ ] Binary quantization
  - [ ] Mixed precision

- [ ] **Compression** (`src/compression/`)
  - [ ] Vector compression
  - [ ] Lossless compression
  - [ ] Lossy compression
  - [ ] Decompression

#### **4.3 Performance Optimization**
- [ ] **Kernel Optimization** (`src/optimization/`)
  - [ ] Kernel fusion
  - [ ] Memory coalescing
  - [ ] Shared memory usage
  - [ ] Register optimization

- [ ] **Memory Optimization** (`src/memory/`)
  - [ ] Memory pooling
  - [ ] Garbage collection
  - [ ] Memory defragmentation
  - [ ] Cache optimization

### πŸ§ͺ **Testing & Validation:**
- [ ] Multi-GPU testing
- [ ] Distributed testing
- [ ] Performance benchmarking
- [ ] Stress testing
- [ ] Fault tolerance testing

### πŸ“Š **Success Metrics:**
- [ ] Multi-GPU support
- [ ] Distributed computing
- [ ] Advanced algorithms
- [ ] Performance > 20x CPU baseline
- [ ] Scalability to 1M+ vectors

---

## πŸ”§ Implementation Strategy

### **Architecture Principles:**

#### **1. Modular Design**
```rust
// Backend-agnostic interface
pub trait GpuBackend {
    fn create_context() -> Result<Box<dyn GpuContext>>;
    fn create_storage(dimension: usize, metric: GpuDistanceMetric) -> Result<Box<dyn GpuVectorStorage>>;
}

// Backend-specific implementations
pub struct CudaBackend { /* ... */ }
pub struct VulkanBackend { /* ... */ }
pub struct MetalBackend { /* ... */ }
```

#### **2. Unified API**
```rust
// Same API across all backends
let context = GpuContext::new(GpuBackendType::Cuda)?;
let storage = context.create_storage(128, GpuDistanceMetric::Cosine)?;
storage.add_vectors(&vectors)?;
let results = storage.search(&query, 10)?;
```

#### **3. Performance Optimization**
```rust
// Backend-specific optimizations
impl GpuVectorStorage for CudaVectorStorage {
    fn search(&self, query: &[f32], limit: usize) -> Result<Vec<GpuSearchResult>> {
        // CUDA-optimized search
        self.cuda_search_kernel(query, limit)
    }
}

impl GpuVectorStorage for VulkanVectorStorage {
    fn search(&self, query: &[f32], limit: usize) -> Result<Vec<GpuSearchResult>> {
        // Vulkan-optimized search
        self.vulkan_search_shader(query, limit)
    }
}
```

### **Development Workflow:**

#### **1. Feature Branches**
```bash
# CUDA implementation
git checkout -b feature/cuda-implementation
git checkout -b feature/cuda-kernels
git checkout -b feature/cuda-memory

# Vulkan implementation
git checkout -b feature/vulkan-implementation
git checkout -b feature/vulkan-shaders
git checkout -b feature/vulkan-memory

# Native APIs
git checkout -b feature/dx12-implementation
git checkout -b feature/mps-integration
git checkout -b feature/opencl-support
```

#### **2. Testing Strategy**
```rust
// Backend-specific tests
#[cfg(feature = "cuda")]
mod cuda_tests {
    #[test]
    fn test_cuda_vector_operations() { /* ... */ }
}

#[cfg(feature = "vulkan")]
mod vulkan_tests {
    #[test]
    fn test_vulkan_compute_shaders() { /* ... */ }
}
```

#### **3. CI/CD Integration**
```yaml
# CUDA testing
- name: Test CUDA
  run: cargo test --features cuda

# Vulkan testing
- name: Test Vulkan
  run: cargo test --features vulkan

# Cross-platform testing
- name: Test All Backends
  run: cargo test --all-features
```

## πŸ“Š Performance Targets

### **Benchmark Goals:**

| Backend | Vectors/sec | Search Latency | Memory Usage | Platform |
|---------|-------------|----------------|--------------|----------|
| **CUDA** | 50,000+ | < 1ms | < 2GB | Linux/Windows |
| **Vulkan** | 30,000+ | < 2ms | < 1.5GB | Cross-platform |
| **Metal** | 40,000+ | < 1ms | < 1GB | macOS |
| **DX12** | 45,000+ | < 1ms | < 1.5GB | Windows |
| **OpenCL** | 25,000+ | < 3ms | < 2GB | Cross-platform |

### **Scalability Targets:**

| Metric | Target | Current | Goal |
|--------|--------|---------|------|
| **Max Vectors** | 1M+ | 10k | 1M+ |
| **Memory Efficiency** | < 2GB | N/A | < 2GB |
| **Search Speed** | < 1ms | N/A | < 1ms |
| **Throughput** | 50k/sec | N/A | 50k/sec |

## πŸ§ͺ Testing Strategy

### **Unit Tests:**
```rust
#[cfg(test)]
mod tests {
    use super::*;
    
    #[test]
    fn test_cuda_context_creation() {
        let context = CudaContext::new().unwrap();
        assert!(context.device_count() > 0);
    }
    
    #[test]
    fn test_vulkan_shader_compilation() {
        let shader = VulkanShader::new("similarity.comp").unwrap();
        assert!(shader.is_valid());
    }
    
    #[test]
    fn test_metal_performance_shaders() {
        let mps = MpsContext::new().unwrap();
        assert!(mps.is_available());
    }
}
```

### **Integration Tests:**
```rust
#[tokio::test]
async fn test_multi_backend_compatibility() {
    let backends = vec![
        GpuBackendType::Cuda,
        GpuBackendType::Vulkan,
        GpuBackendType::Metal,
    ];
    
    for backend in backends {
        let context = GpuContext::new(backend).await.unwrap();
        let storage = context.create_storage(128, GpuDistanceMetric::Cosine).unwrap();
        
        // Test basic operations
        let vectors = create_test_vectors();
        storage.add_vectors(&vectors).unwrap();
        
        let query = vec![1.0; 128];
        let results = storage.search(&query, 5).unwrap();
        assert_eq!(results.len(), 5);
    }
}
```

### **Performance Tests:**
```rust
#[bench]
fn bench_cuda_search(b: &mut Bencher) {
    let context = CudaContext::new().unwrap();
    let storage = context.create_storage(512, GpuDistanceMetric::Cosine).unwrap();
    
    // Add test vectors
    let vectors = create_large_vector_set(10000);
    storage.add_vectors(&vectors).unwrap();
    
    b.iter(|| {
        let query = create_random_query();
        storage.search(&query, 10).unwrap()
    });
}
```

## πŸ“ˆ Milestones

### **Q1 2024: CUDA Implementation**
- [ ] **Week 1-2**: CUDA context and memory management
- [ ] **Week 3-4**: CUDA kernels for basic operations
- [ ] **Week 5-6**: CUDA HNSW implementation
- [ ] **Week 7-8**: Testing and optimization
- [ ] **Week 9-10**: Performance benchmarking
- [ ] **Week 11-12**: Documentation and release

### **Q2 2024: Vulkan Implementation**
- [ ] **Week 1-2**: Vulkan context and device management
- [ ] **Week 3-4**: Vulkan compute shaders
- [ ] **Week 5-6**: Vulkan memory management
- [ ] **Week 7-8**: Vulkan HNSW implementation
- [ ] **Week 9-10**: Cross-platform testing
- [ ] **Week 11-12**: Performance optimization

### **Q3 2024: Native APIs**
- [ ] **Week 1-4**: DirectX 12 implementation
- [ ] **Week 5-8**: Metal Performance Shaders
- [ ] **Week 9-12**: OpenCL support

### **Q4 2024: Advanced Features**
- [ ] **Week 1-4**: Multi-GPU support
- [ ] **Week 5-8**: Advanced algorithms
- [ ] **Week 9-12**: Performance optimization

## 🎯 Success Criteria

### **Technical Goals:**
- [ ] **CUDA**: 50k+ vectors/sec, < 1ms latency
- [ ] **Vulkan**: 30k+ vectors/sec, < 2ms latency
- [ ] **Metal**: 40k+ vectors/sec, < 1ms latency
- [ ] **DX12**: 45k+ vectors/sec, < 1ms latency
- [ ] **OpenCL**: 25k+ vectors/sec, < 3ms latency

### **Quality Goals:**
- [ ] **Test Coverage**: > 90%
- [ ] **Memory Safety**: Zero leaks
- [ ] **Error Handling**: Comprehensive
- [ ] **Documentation**: Complete
- [ ] **Performance**: > 10x CPU baseline

### **User Experience:**
- [ ] **Easy Integration**: Simple API
- [ ] **Cross-platform**: Works everywhere
- [ ] **Performance**: Fast and efficient
- [ ] **Reliability**: Stable and robust
- [ ] **Documentation**: Clear and complete

---

## πŸš€ Getting Started

### **For Contributors:**
1. **Choose a backend** from the roadmap
2. **Create a feature branch** for your implementation
3. **Follow the architecture** principles
4. **Write comprehensive tests** for your code
5. **Submit a pull request** with your implementation

### **For Users:**
1. **Check the roadmap** for your desired backend
2. **Follow the documentation** for integration
3. **Test with your use case** and provide feedback
4. **Report issues** and suggest improvements

---

**This roadmap ensures `hive-gpu` becomes the most comprehensive and performant GPU acceleration library for vector operations! πŸš€**