1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
// SPDX-License-Identifier: CC0-1.0
//! Helpers for displaying bytes as hex strings.
//!
//! This module provides a trait for displaying things as hex as well as an implementation for
//! `&[u8]`.
//!
//! For arrays and slices we support padding and precision for length < 512 bytes.
//!
//! # Examples
//!
//! ```
//! use hex_conservative::DisplayHex;
//!
//! // Display as hex.
//! let v = vec![0xde, 0xad, 0xbe, 0xef];
//! assert_eq!(format!("{}", v.as_hex()), "deadbeef");
//!
//! // Get the most significant bytes.
//! let v = vec![0x01, 0x23, 0x45, 0x67];
//! assert_eq!(format!("{0:.4}", v.as_hex()), "0123");
//!
//! // Padding with zeros
//! let v = vec![0xab; 2];
//! assert_eq!(format!("{:0>8}", v.as_hex()), "0000abab");
//!```
#[cfg(all(feature = "alloc", not(feature = "std")))]
use alloc::string::String;
use core::borrow::Borrow;
use core::fmt;
use super::Case;
use crate::buf_encoder::BufEncoder;
/// Extension trait for types that can be displayed as hex.
///
/// Types that have a single, obvious text representation being hex should **not** implement this
/// trait and simply implement `Display` instead.
///
/// This trait should be generally implemented for references only. We would prefer to use GAT but
/// that is beyond our MSRV. As a lint we require the `IsRef` trait which is implemented for all
/// references.
pub trait DisplayHex: Copy + sealed::IsRef {
/// The type providing [`fmt::Display`] implementation.
///
/// This is usually a wrapper type holding a reference to `Self`.
type Display: fmt::Display + fmt::Debug + fmt::LowerHex + fmt::UpperHex;
/// Display `Self` as a continuous sequence of ASCII hex chars.
fn as_hex(self) -> Self::Display;
/// Create a lower-hex-encoded string.
///
/// A shorthand for `to_hex_string(Case::Lower)`, so that `Case` doesn't need to be imported.
///
/// This may be faster than `.display_hex().to_string()` because it uses `reserve_suggestion`.
#[cfg(feature = "alloc")]
fn to_lower_hex_string(self) -> String { self.to_hex_string(Case::Lower) }
/// Create an upper-hex-encoded string.
///
/// A shorthand for `to_hex_string(Case::Upper)`, so that `Case` doesn't need to be imported.
///
/// This may be faster than `.display_hex().to_string()` because it uses `reserve_suggestion`.
#[cfg(feature = "alloc")]
fn to_upper_hex_string(self) -> String { self.to_hex_string(Case::Upper) }
/// Create a hex-encoded string.
///
/// This may be faster than `.display_hex().to_string()` because it uses `reserve_suggestion`.
#[cfg(feature = "alloc")]
fn to_hex_string(self, case: Case) -> String {
let mut string = String::new();
self.append_hex_to_string(case, &mut string);
string
}
/// Appends hex-encoded content to an existing `String`.
///
/// This may be faster than `write!(string, "{:x}", self.as_hex())` because it uses
/// `hex_reserve_sugggestion`.
#[cfg(feature = "alloc")]
fn append_hex_to_string(self, case: Case, string: &mut String) {
use fmt::Write;
string.reserve(self.hex_reserve_suggestion());
match case {
Case::Lower => write!(string, "{:x}", self.as_hex()),
Case::Upper => write!(string, "{:X}", self.as_hex()),
}
.unwrap_or_else(|_| {
let name = core::any::type_name::<Self::Display>();
// We don't expect `std` to ever be buggy, so the bug is most likely in the `Display`
// impl of `Self::Display`.
panic!("The implementation of Display for {} returned an error when it shouldn't", name)
})
}
/// Hints how much bytes to reserve when creating a `String`.
///
/// Implementors that know the number of produced bytes upfront should override this.
/// Defaults to 0.
///
// We prefix the name with `hex_` to avoid potential collision with other methods.
fn hex_reserve_suggestion(self) -> usize { 0 }
}
mod sealed {
/// Trait marking a shared reference.
pub trait IsRef: Copy {}
impl<T: ?Sized> IsRef for &'_ T {}
}
impl<'a> DisplayHex for &'a [u8] {
type Display = DisplayByteSlice<'a>;
#[inline]
fn as_hex(self) -> Self::Display { DisplayByteSlice { bytes: self } }
#[inline]
fn hex_reserve_suggestion(self) -> usize {
// Since the string wouldn't fit into address space if this overflows (actually even for
// smaller amounts) it's better to panic right away. It should also give the optimizer
// better opportunities.
self.len().checked_mul(2).expect("the string wouldn't fit into address space")
}
}
#[cfg(feature = "alloc")]
impl<'a> DisplayHex for &'a alloc::vec::Vec<u8> {
type Display = DisplayByteSlice<'a>;
#[inline]
fn as_hex(self) -> Self::Display { DisplayByteSlice { bytes: self } }
#[inline]
fn hex_reserve_suggestion(self) -> usize {
// Since the string wouldn't fit into address space if this overflows (actually even for
// smaller amounts) it's better to panic right away. It should also give the optimizer
// better opportunities.
self.len().checked_mul(2).expect("the string wouldn't fit into address space")
}
}
/// Displays byte slice as hex.
///
/// Created by [`<&[u8] as DisplayHex>::as_hex`](DisplayHex::as_hex).
pub struct DisplayByteSlice<'a> {
// pub because we want to keep lengths in sync
pub(crate) bytes: &'a [u8],
}
impl<'a> DisplayByteSlice<'a> {
fn display(&self, f: &mut fmt::Formatter, case: Case) -> fmt::Result {
use fmt::Write;
// There are at least two optimizations left:
//
// * Reusing the buffer (encoder) which may decrease the number of virtual calls
// * Not recursing, avoiding another 1024B allocation and zeroing
//
// This would complicate the code so I was too lazy to do them but feel free to send a PR!
let mut encoder = BufEncoder::<1024>::new();
let pad_right = if let Some(width) = f.width() {
let string_len = match f.precision() {
Some(max) if self.bytes.len() * 2 > (max + 1) / 2 => max,
Some(_) | None => self.bytes.len() * 2,
};
if string_len < width {
let (left, right) = match f.align().unwrap_or(fmt::Alignment::Left) {
fmt::Alignment::Left => (0, width - string_len),
fmt::Alignment::Right => (width - string_len, 0),
fmt::Alignment::Center =>
((width - string_len) / 2, (width - string_len + 1) / 2),
};
// Avoid division by zero and optimize for common case.
if left > 0 {
let c = f.fill();
let chunk_len = encoder.put_filler(c, left);
let padding = encoder.as_str();
for _ in 0..(left / chunk_len) {
f.write_str(padding)?;
}
f.write_str(&padding[..((left % chunk_len) * c.len_utf8())])?;
encoder.clear();
}
right
} else {
0
}
} else {
0
};
match f.precision() {
Some(max) if self.bytes.len() > (max + 1) / 2 => {
write!(f, "{}", self.bytes[..(max / 2)].as_hex())?;
if max % 2 == 1 && self.bytes.len() > max / 2 + 1 {
f.write_char(
case.table().byte_to_hex(self.bytes[max / 2 + 1]).as_bytes()[1].into(),
)?;
}
}
Some(_) | None => {
let mut chunks = self.bytes.chunks_exact(512);
for chunk in &mut chunks {
encoder.put_bytes(chunk, case);
f.write_str(encoder.as_str())?;
encoder.clear();
}
encoder.put_bytes(chunks.remainder(), case);
f.write_str(encoder.as_str())?;
}
}
// Avoid division by zero and optimize for common case.
if pad_right > 0 {
encoder.clear();
let c = f.fill();
let chunk_len = encoder.put_filler(c, pad_right);
let padding = encoder.as_str();
for _ in 0..(pad_right / chunk_len) {
f.write_str(padding)?;
}
f.write_str(&padding[..((pad_right % chunk_len) * c.len_utf8())])?;
}
Ok(())
}
}
impl<'a> fmt::Display for DisplayByteSlice<'a> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { fmt::LowerHex::fmt(self, f) }
}
impl<'a> fmt::Debug for DisplayByteSlice<'a> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { fmt::LowerHex::fmt(self, f) }
}
impl<'a> fmt::LowerHex for DisplayByteSlice<'a> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { self.display(f, Case::Lower) }
}
impl<'a> fmt::UpperHex for DisplayByteSlice<'a> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { self.display(f, Case::Upper) }
}
/// Displays byte array as hex.
///
/// Created by [`<&[u8; CAP / 2] as DisplayHex>::as_hex`](DisplayHex::as_hex).
pub struct DisplayArray<'a, const CAP: usize> {
array: &'a [u8],
}
impl<'a, const CAP: usize> DisplayArray<'a, CAP> {
/// Creates the wrapper.
///
/// # Panics
///
/// When the length of array is greater than capacity / 2.
#[inline]
fn new(array: &'a [u8]) -> Self {
assert!(array.len() <= CAP / 2);
DisplayArray { array }
}
fn display(&self, f: &mut fmt::Formatter, case: Case) -> fmt::Result {
let mut encoder = BufEncoder::<CAP>::new();
encoder.put_bytes(self.array, case);
f.pad_integral(true, "0x", encoder.as_str())
}
}
impl<'a, const LEN: usize> fmt::Display for DisplayArray<'a, LEN> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { fmt::LowerHex::fmt(self, f) }
}
impl<'a, const LEN: usize> fmt::Debug for DisplayArray<'a, LEN> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { fmt::LowerHex::fmt(self, f) }
}
impl<'a, const LEN: usize> fmt::LowerHex for DisplayArray<'a, LEN> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { self.display(f, Case::Lower) }
}
impl<'a, const LEN: usize> fmt::UpperHex for DisplayArray<'a, LEN> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { self.display(f, Case::Upper) }
}
macro_rules! impl_array_as_hex {
($($len:expr),*) => {
$(
impl<'a> DisplayHex for &'a [u8; $len] {
type Display = DisplayArray<'a, {$len * 2}>;
fn as_hex(self) -> Self::Display {
DisplayArray::new(self)
}
}
)*
}
}
impl_array_as_hex!(
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 20, 32, 33, 64, 65, 128, 256, 512, 1024,
2048, 4096
);
/// Format known-length array as hex.
///
/// This supports all formatting options of formatter and may be faster than calling `as_hex()` on
/// an arbitrary `&[u8]`. Note that the implementation intentionally keeps leading zeros even when
/// not requested. This is designed to display values such as hashes and keys and removing leading
/// zeros would be confusing.
///
/// Note that the bytes parameter is `IntoIterator` this means that if you would like to do some
/// manipulation to the byte array before formatting then you can. For example `bytes.iter().rev()`
/// to print the array backwards.
///
/// ## Parameters
///
/// * `$formatter` - a [`fmt::Formatter`].
/// * `$len` known length of `$bytes`, must be a const expression.
/// * `$bytes` - bytes to be encoded, most likely a reference to an array.
/// * `$case` - value of type [`Case`] determining whether to format as lower or upper case.
///
/// ## Panics
///
/// This macro panics if `$len` is not equal to `$bytes.len()`. It also fails to compile if `$len`
/// is more than half of `usize::MAX`.
#[macro_export]
macro_rules! fmt_hex_exact {
($formatter:expr, $len:expr, $bytes:expr, $case:expr) => {{
// statically check $len
#[allow(deprecated)]
const _: () = [()][($len > usize::MAX / 2) as usize];
assert_eq!($bytes.len(), $len);
$crate::display::fmt_hex_exact_fn::<_, { $len * 2 }>($formatter, $bytes, $case)
}};
}
pub use fmt_hex_exact;
// Implementation detail of `write_hex_exact` macro to de-duplicate the code
//
// Whether hex is an integer or a string is debatable, we cater a little bit to each.
// - We support users adding `0x` prefix using "{:#}" (treating hex like an integer).
// - We support limiting the output using precision "{:.10}" (treating hex like a string).
#[doc(hidden)]
#[inline]
pub fn fmt_hex_exact_fn<I, const N: usize>(
f: &mut fmt::Formatter,
bytes: I,
case: Case,
) -> fmt::Result
where
I: IntoIterator,
I::Item: Borrow<u8>,
{
let mut encoder = BufEncoder::<N>::new();
encoder.put_bytes(bytes, case);
let encoded = encoder.as_str();
if let Some(precision) = f.precision() {
if encoded.len() > precision {
return f.pad_integral(true, "0x", &encoded[..precision]);
}
}
f.pad_integral(true, "0x", encoded)
}
#[cfg(test)]
mod tests {
#[cfg(feature = "alloc")]
use super::*;
#[cfg(feature = "alloc")]
mod alloc {
use super::*;
fn check_encoding(bytes: &[u8]) {
use core::fmt::Write;
let s1 = bytes.to_lower_hex_string();
let mut s2 = String::with_capacity(bytes.len() * 2);
for b in bytes {
write!(s2, "{:02x}", b).unwrap();
}
assert_eq!(s1, s2);
}
#[test]
fn empty() { check_encoding(b""); }
#[test]
fn single() { check_encoding(b"*"); }
#[test]
fn two() { check_encoding(b"*x"); }
#[test]
fn just_below_boundary() { check_encoding(&[42; 512]); }
#[test]
fn just_above_boundary() { check_encoding(&[42; 513]); }
#[test]
fn just_above_double_boundary() { check_encoding(&[42; 1025]); }
#[test]
fn fmt_exact_macro() {
use crate::alloc::string::ToString;
struct Dummy([u8; 32]);
impl fmt::Display for Dummy {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt_hex_exact!(f, 32, &self.0, Case::Lower)
}
}
let dummy = Dummy([42; 32]);
assert_eq!(dummy.to_string(), "2a".repeat(32));
assert_eq!(format!("{:.10}", dummy), "2a".repeat(5));
}
#[test]
fn display_short_with_padding() {
let v = vec![0xbe, 0xef];
assert_eq!(format!("Hello {:<8}!", v.as_hex()), "Hello beef !");
assert_eq!(format!("Hello {:-<8}!", v.as_hex()), "Hello beef----!");
assert_eq!(format!("Hello {:^8}!", v.as_hex()), "Hello beef !");
assert_eq!(format!("Hello {:>8}!", v.as_hex()), "Hello beef!");
}
#[test]
fn display_long() {
// Note this string is shorter than the one above.
let v = vec![0xab; 512];
let mut want = "0".repeat(2000 - 1024);
want.extend(core::iter::repeat("ab").take(512));
let got = format!("{:0>2000}", v.as_hex());
assert_eq!(got, want)
}
// Precision and padding act the same as for strings in the stdlib (because we use `Formatter::pad`).
#[test]
fn precision_truncates() {
// Precision gets the most significant bytes.
let v = vec![0x12, 0x34, 0x56, 0x78];
// Remember the integer is number of hex chars not number of bytes.
assert_eq!(format!("{0:.4}", v.as_hex()), "1234");
}
#[test]
fn precision_with_padding_truncates() {
// Precision gets the most significant bytes.
let v = vec![0x12, 0x34, 0x56, 0x78];
assert_eq!(format!("{0:10.4}", v.as_hex()), "1234 ");
}
#[test]
fn precision_with_padding_pads_right() {
let v = vec![0x12, 0x34, 0x56, 0x78];
assert_eq!(format!("{0:10.20}", v.as_hex()), "12345678 ");
}
#[test]
fn precision_with_padding_pads_left() {
let v = vec![0x12, 0x34, 0x56, 0x78];
assert_eq!(format!("{0:>10.20}", v.as_hex()), " 12345678");
}
#[test]
fn precision_with_padding_pads_center() {
let v = vec![0x12, 0x34, 0x56, 0x78];
assert_eq!(format!("{0:^10.20}", v.as_hex()), " 12345678 ");
}
#[test]
fn precision_with_padding_pads_center_odd() {
let v = vec![0x12, 0x34, 0x56, 0x78];
assert_eq!(format!("{0:^11.20}", v.as_hex()), " 12345678 ");
}
#[test]
fn precision_does_not_extend() {
let v = vec![0x12, 0x34, 0x56, 0x78];
assert_eq!(format!("{0:.16}", v.as_hex()), "12345678");
}
#[test]
fn padding_extends() {
let v = vec![0xab; 2];
assert_eq!(format!("{:0>8}", v.as_hex()), "0000abab");
}
#[test]
fn padding_does_not_truncate() {
let v = vec![0x12, 0x34, 0x56, 0x78];
assert_eq!(format!("{:0>4}", v.as_hex()), "12345678");
}
}
}