pub struct LLMClient { /* private fields */ }Expand description
A client for interacting with an LLM.
Implementations§
Source§impl LLMClient
impl LLMClient
Sourcepub async fn new(provider_type: LLMProviderType) -> Result<Self>
pub async fn new(provider_type: LLMProviderType) -> Result<Self>
Creates a new LLMClient.
Examples found in repository?
examples/direct_llm_usage.rs (line 64)
52async fn simple_call() -> helios_engine::Result<()> {
53 // Create a configuration for the LLM.
54 let llm_config = LLMConfig {
55 model_name: "gpt-3.5-turbo".to_string(),
56 base_url: "https://api.openai.com/v1".to_string(),
57 api_key: std::env::var("OPENAI_API_KEY")
58 .unwrap_or_else(|_| "your-api-key-here".to_string()),
59 temperature: 0.7,
60 max_tokens: 2048,
61 };
62
63 // Create a new LLM client.
64 let client = LLMClient::new(helios_engine::llm::LLMProviderType::Remote(llm_config)).await?;
65
66 // Prepare the messages to send to the LLM.
67 let messages = vec![
68 ChatMessage::system("You are a helpful assistant that gives concise answers."),
69 ChatMessage::user("What is the capital of France? Answer in one sentence."),
70 ];
71
72 // Make the call to the LLM.
73 println!("Sending request...");
74 match client.chat(messages, None, None, None, None).await {
75 Ok(response) => {
76 println!("✓ Response: {}", response.content);
77 }
78 Err(e) => {
79 println!("✗ Error: {}", e);
80 println!(" (Make sure to set OPENAI_API_KEY environment variable)");
81 }
82 }
83
84 Ok(())
85}
86
87/// Demonstrates a multi-turn conversation with context.
88async fn conversation_with_context() -> helios_engine::Result<()> {
89 // Create a configuration for the LLM.
90 let llm_config = LLMConfig {
91 model_name: "gpt-3.5-turbo".to_string(),
92 base_url: "https://api.openai.com/v1".to_string(),
93 api_key: std::env::var("OPENAI_API_KEY")
94 .unwrap_or_else(|_| "your-api-key-here".to_string()),
95 temperature: 0.7,
96 max_tokens: 2048,
97 };
98
99 // Create a new LLM client.
100 let client = LLMClient::new(helios_engine::llm::LLMProviderType::Remote(llm_config)).await?;
101
102 // Use a `ChatSession` to manage the conversation history.
103 let mut session = ChatSession::new()
104 .with_system_prompt("You are a helpful math tutor. Give brief, clear explanations.");
105
106 // --- First turn ---
107 println!("Turn 1:");
108 session.add_user_message("What is 15 * 23?");
109 print!(" User: What is 15 * 23?\n ");
110
111 match client
112 .chat(session.get_messages(), None, None, None, None)
113 .await
114 {
115 Ok(response) => {
116 session.add_assistant_message(&response.content);
117 println!("Assistant: {}", response.content);
118 }
119 Err(e) => {
120 println!("Error: {}", e);
121 return Ok(());
122 }
123 }
124
125 // --- Second turn (with context from the first turn) ---
126 println!("\nTurn 2:");
127 session.add_user_message("Now divide that by 5.");
128 print!(" User: Now divide that by 5.\n ");
129
130 match client
131 .chat(session.get_messages(), None, None, None, None)
132 .await
133 {
134 Ok(response) => {
135 session.add_assistant_message(&response.content);
136 println!("Assistant: {}", response.content);
137 }
138 Err(e) => {
139 println!("Error: {}", e);
140 }
141 }
142
143 println!("\n💡 Notice how the assistant remembered the result from the first calculation!");
144
145 Ok(())
146}
147
148/// Provides information about using different LLM providers.
149fn different_providers_info() {
150 println!("You can use Helios with various LLM providers:\n");
151
152 println!("🔵 OpenAI:");
153 println!(" LLMConfig {{");
154 println!(" model_name: \"gpt-4\".to_string(),");
155 println!(" base_url: \"https://api.openai.com/v1\".to_string(),");
156 println!(" api_key: env::var(\"OPENAI_API_KEY\").unwrap(),");
157 println!(" temperature: 0.7,");
158 println!(" max_tokens: 2048,");
159 println!(" }}\n");
160
161 println!("🟢 Local LM Studio:");
162 println!(" LLMConfig {{");
163 println!(" model_name: \"local-model\".to_string(),");
164 println!(" base_url: \"http://localhost:1234/v1\".to_string(),");
165 println!(" api_key: \"not-needed\".to_string(),");
166 println!(" temperature: 0.7,");
167 println!(" max_tokens: 2048,");
168 println!(" }}\n");
169
170 println!("🦙 Ollama:");
171 println!(" LLMConfig {{");
172 println!(" model_name: \"llama2\".to_string(),");
173 println!(" base_url: \"http://localhost:11434/v1\".to_string(),");
174 println!(" api_key: \"not-needed\".to_string(),");
175 println!(" temperature: 0.7,");
176 println!(" max_tokens: 2048,");
177 println!(" }}\n");
178
179 println!("🔷 Azure OpenAI:");
180 println!(" LLMConfig {{");
181 println!(" model_name: \"gpt-35-turbo\".to_string(),");
182 println!(" base_url: \"https://your-resource.openai.azure.com/...\".to_string(),");
183 println!(" api_key: env::var(\"AZURE_OPENAI_KEY\").unwrap(),");
184 println!(" temperature: 0.7,");
185 println!(" max_tokens: 2048,");
186 println!(" }}\n");
187}
188
189/// Starts an interactive chat session with the LLM.
190async fn interactive_chat() -> helios_engine::Result<()> {
191 // Create a configuration for the LLM.
192 let llm_config = LLMConfig {
193 model_name: "gpt-3.5-turbo".to_string(),
194 base_url: "https://api.openai.com/v1".to_string(),
195 api_key: std::env::var("OPENAI_API_KEY")
196 .unwrap_or_else(|_| "your-api-key-here".to_string()),
197 temperature: 0.7,
198 max_tokens: 2048,
199 };
200
201 // Create a new LLM client.
202 let client = LLMClient::new(helios_engine::llm::LLMProviderType::Remote(llm_config)).await?;
203 let mut session =
204 ChatSession::new().with_system_prompt("You are a friendly and helpful AI assistant.");
205
206 println!("Chat started! Type 'exit' or 'quit' to end the conversation.\n");
207
208 loop {
209 print!("You: ");
210 io::stdout().flush()?;
211
212 let mut input = String::new();
213 io::stdin().read_line(&mut input)?;
214 let input = input.trim();
215
216 if input.is_empty() {
217 continue;
218 }
219
220 if input == "exit" || input == "quit" {
221 println!("\n👋 Goodbye!");
222 break;
223 }
224
225 // Handle special commands.
226 if input == "clear" {
227 session.clear();
228 println!("🧹 Conversation cleared!\n");
229 continue;
230 }
231
232 if input == "history" {
233 println!("\n📜 Conversation history:");
234 for (i, msg) in session.messages.iter().enumerate() {
235 println!(" {}. {:?}: {}", i + 1, msg.role, msg.content);
236 }
237 println!();
238 continue;
239 }
240
241 session.add_user_message(input);
242
243 print!("Assistant: ");
244 io::stdout().flush()?;
245
246 match client
247 .chat(session.get_messages(), None, None, None, None)
248 .await
249 {
250 Ok(response) => {
251 session.add_assistant_message(&response.content);
252 println!("{}\n", response.content);
253 }
254 Err(e) => {
255 println!("\n❌ Error: {}", e);
256 println!(" (Make sure OPENAI_API_KEY is set correctly)\n");
257 // Remove the last user message since it failed.
258 session.messages.pop();
259 }
260 }
261 }
262
263 Ok(())
264}More examples
examples/streaming_chat.rs (line 29)
14async fn main() -> helios_engine::Result<()> {
15 println!("🚀 Helios Engine - Streaming Example");
16 println!("=====================================\n");
17
18 // Set up the LLM configuration.
19 let llm_config = LLMConfig {
20 model_name: "gpt-3.5-turbo".to_string(),
21 base_url: "https://api.openai.com/v1".to_string(),
22 api_key: std::env::var("OPENAI_API_KEY")
23 .unwrap_or_else(|_| "your-api-key-here".to_string()),
24 temperature: 0.7,
25 max_tokens: 2048,
26 };
27
28 // Create a new LLM client.
29 let client = LLMClient::new(helios_engine::llm::LLMProviderType::Remote(llm_config)).await?;
30
31 // --- Example 1: Simple streaming response ---
32 println!("Example 1: Simple Streaming Response");
33 println!("======================================\n");
34
35 let messages = vec![
36 ChatMessage::system("You are a helpful assistant."),
37 ChatMessage::user("Write a short poem about coding."),
38 ];
39
40 print!("Assistant: ");
41 io::stdout().flush()?;
42
43 // Stream the response from the model, printing each chunk as it arrives.
44 let response = client
45 .chat_stream(messages, None, None, None, None, |chunk| {
46 print!("{}", chunk);
47 io::stdout().flush().unwrap();
48 })
49 .await?;
50
51 println!("\n\n");
52
53 // --- Example 2: Interactive streaming chat ---
54 println!("Example 2: Interactive Streaming Chat");
55 println!("======================================\n");
56
57 let mut session = ChatSession::new().with_system_prompt("You are a helpful coding assistant.");
58
59 let questions = vec![
60 "What is Rust?",
61 "What are its main benefits?",
62 "Show me a simple example.",
63 ];
64
65 for question in questions {
66 println!("User: {}", question);
67 session.add_user_message(question);
68
69 print!("Assistant: ");
70 io::stdout().flush()?;
71
72 // Stream the response, maintaining the conversation context.
73 let response = client
74 .chat_stream(session.get_messages(), None, None, None, None, |chunk| {
75 print!("{}", chunk);
76 io::stdout().flush().unwrap();
77 })
78 .await?;
79
80 session.add_assistant_message(&response.content);
81 println!("\n");
82 }
83
84 // --- Example 3: Streaming with thinking tags ---
85 println!("\nExample 3: Streaming with Thinking Tags");
86 println!("=========================================\n");
87 println!("When using models that support thinking tags (like o1),");
88 println!("you can detect and display them during streaming.\n");
89
90 /// A helper struct to track and display thinking tags in streamed responses.
91 struct ThinkingTracker {
92 in_thinking: bool,
93 thinking_buffer: String,
94 }
95
96 impl ThinkingTracker {
97 /// Creates a new `ThinkingTracker`.
98 fn new() -> Self {
99 Self {
100 in_thinking: false,
101 thinking_buffer: String::new(),
102 }
103 }
104
105 /// Processes a chunk of a streamed response and returns the processed output.
106 fn process_chunk(&mut self, chunk: &str) -> String {
107 let mut output = String::new();
108 let mut chars = chunk.chars().peekable();
109
110 while let Some(c) = chars.next() {
111 if c == '<' {
112 let remaining: String = chars.clone().collect();
113 if remaining.starts_with("thinking>") {
114 self.in_thinking = true;
115 self.thinking_buffer.clear();
116 output.push_str("\n💭 [Thinking");
117 for _ in 0..9 {
118 chars.next();
119 }
120 continue;
121 } else if remaining.starts_with("/thinking>") {
122 self.in_thinking = false;
123 output.push_str("]\n");
124 for _ in 0..10 {
125 chars.next();
126 }
127 continue;
128 }
129 }
130
131 if self.in_thinking {
132 self.thinking_buffer.push(c);
133 if self.thinking_buffer.len() % 3 == 0 {
134 output.push('.');
135 }
136 } else {
137 output.push(c);
138 }
139 }
140
141 output
142 }
143 }
144
145 let messages = vec![ChatMessage::user(
146 "Solve this problem: What is 15 * 234 + 89?",
147 )];
148
149 let mut tracker = ThinkingTracker::new();
150 print!("Assistant: ");
151 io::stdout().flush()?;
152
153 // Stream the response, processing thinking tags as they arrive.
154 let _response = client
155 .chat_stream(messages, None, None, None, None, |chunk| {
156 let output = tracker.process_chunk(chunk);
157 print!("{}", output);
158 io::stdout().flush().unwrap();
159 })
160 .await?;
161
162 println!("\n\n✅ Streaming examples completed!");
163 println!("\nKey benefits of streaming:");
164 println!(" • Real-time response display");
165 println!(" • Better user experience for long responses");
166 println!(" • Ability to show thinking/reasoning process");
167 println!(" • Early cancellation possible (future feature)");
168
169 Ok(())
170}Sourcepub fn provider_type(&self) -> &LLMProviderType
pub fn provider_type(&self) -> &LLMProviderType
Returns the type of the LLM provider.
Source§impl LLMClient
impl LLMClient
Sourcepub async fn chat(
&self,
messages: Vec<ChatMessage>,
tools: Option<Vec<ToolDefinition>>,
temperature: Option<f32>,
max_tokens: Option<u32>,
stop: Option<Vec<String>>,
) -> Result<ChatMessage>
pub async fn chat( &self, messages: Vec<ChatMessage>, tools: Option<Vec<ToolDefinition>>, temperature: Option<f32>, max_tokens: Option<u32>, stop: Option<Vec<String>>, ) -> Result<ChatMessage>
Sends a chat request to the LLM.
Examples found in repository?
examples/direct_llm_usage.rs (line 74)
52async fn simple_call() -> helios_engine::Result<()> {
53 // Create a configuration for the LLM.
54 let llm_config = LLMConfig {
55 model_name: "gpt-3.5-turbo".to_string(),
56 base_url: "https://api.openai.com/v1".to_string(),
57 api_key: std::env::var("OPENAI_API_KEY")
58 .unwrap_or_else(|_| "your-api-key-here".to_string()),
59 temperature: 0.7,
60 max_tokens: 2048,
61 };
62
63 // Create a new LLM client.
64 let client = LLMClient::new(helios_engine::llm::LLMProviderType::Remote(llm_config)).await?;
65
66 // Prepare the messages to send to the LLM.
67 let messages = vec![
68 ChatMessage::system("You are a helpful assistant that gives concise answers."),
69 ChatMessage::user("What is the capital of France? Answer in one sentence."),
70 ];
71
72 // Make the call to the LLM.
73 println!("Sending request...");
74 match client.chat(messages, None, None, None, None).await {
75 Ok(response) => {
76 println!("✓ Response: {}", response.content);
77 }
78 Err(e) => {
79 println!("✗ Error: {}", e);
80 println!(" (Make sure to set OPENAI_API_KEY environment variable)");
81 }
82 }
83
84 Ok(())
85}
86
87/// Demonstrates a multi-turn conversation with context.
88async fn conversation_with_context() -> helios_engine::Result<()> {
89 // Create a configuration for the LLM.
90 let llm_config = LLMConfig {
91 model_name: "gpt-3.5-turbo".to_string(),
92 base_url: "https://api.openai.com/v1".to_string(),
93 api_key: std::env::var("OPENAI_API_KEY")
94 .unwrap_or_else(|_| "your-api-key-here".to_string()),
95 temperature: 0.7,
96 max_tokens: 2048,
97 };
98
99 // Create a new LLM client.
100 let client = LLMClient::new(helios_engine::llm::LLMProviderType::Remote(llm_config)).await?;
101
102 // Use a `ChatSession` to manage the conversation history.
103 let mut session = ChatSession::new()
104 .with_system_prompt("You are a helpful math tutor. Give brief, clear explanations.");
105
106 // --- First turn ---
107 println!("Turn 1:");
108 session.add_user_message("What is 15 * 23?");
109 print!(" User: What is 15 * 23?\n ");
110
111 match client
112 .chat(session.get_messages(), None, None, None, None)
113 .await
114 {
115 Ok(response) => {
116 session.add_assistant_message(&response.content);
117 println!("Assistant: {}", response.content);
118 }
119 Err(e) => {
120 println!("Error: {}", e);
121 return Ok(());
122 }
123 }
124
125 // --- Second turn (with context from the first turn) ---
126 println!("\nTurn 2:");
127 session.add_user_message("Now divide that by 5.");
128 print!(" User: Now divide that by 5.\n ");
129
130 match client
131 .chat(session.get_messages(), None, None, None, None)
132 .await
133 {
134 Ok(response) => {
135 session.add_assistant_message(&response.content);
136 println!("Assistant: {}", response.content);
137 }
138 Err(e) => {
139 println!("Error: {}", e);
140 }
141 }
142
143 println!("\n💡 Notice how the assistant remembered the result from the first calculation!");
144
145 Ok(())
146}
147
148/// Provides information about using different LLM providers.
149fn different_providers_info() {
150 println!("You can use Helios with various LLM providers:\n");
151
152 println!("🔵 OpenAI:");
153 println!(" LLMConfig {{");
154 println!(" model_name: \"gpt-4\".to_string(),");
155 println!(" base_url: \"https://api.openai.com/v1\".to_string(),");
156 println!(" api_key: env::var(\"OPENAI_API_KEY\").unwrap(),");
157 println!(" temperature: 0.7,");
158 println!(" max_tokens: 2048,");
159 println!(" }}\n");
160
161 println!("🟢 Local LM Studio:");
162 println!(" LLMConfig {{");
163 println!(" model_name: \"local-model\".to_string(),");
164 println!(" base_url: \"http://localhost:1234/v1\".to_string(),");
165 println!(" api_key: \"not-needed\".to_string(),");
166 println!(" temperature: 0.7,");
167 println!(" max_tokens: 2048,");
168 println!(" }}\n");
169
170 println!("🦙 Ollama:");
171 println!(" LLMConfig {{");
172 println!(" model_name: \"llama2\".to_string(),");
173 println!(" base_url: \"http://localhost:11434/v1\".to_string(),");
174 println!(" api_key: \"not-needed\".to_string(),");
175 println!(" temperature: 0.7,");
176 println!(" max_tokens: 2048,");
177 println!(" }}\n");
178
179 println!("🔷 Azure OpenAI:");
180 println!(" LLMConfig {{");
181 println!(" model_name: \"gpt-35-turbo\".to_string(),");
182 println!(" base_url: \"https://your-resource.openai.azure.com/...\".to_string(),");
183 println!(" api_key: env::var(\"AZURE_OPENAI_KEY\").unwrap(),");
184 println!(" temperature: 0.7,");
185 println!(" max_tokens: 2048,");
186 println!(" }}\n");
187}
188
189/// Starts an interactive chat session with the LLM.
190async fn interactive_chat() -> helios_engine::Result<()> {
191 // Create a configuration for the LLM.
192 let llm_config = LLMConfig {
193 model_name: "gpt-3.5-turbo".to_string(),
194 base_url: "https://api.openai.com/v1".to_string(),
195 api_key: std::env::var("OPENAI_API_KEY")
196 .unwrap_or_else(|_| "your-api-key-here".to_string()),
197 temperature: 0.7,
198 max_tokens: 2048,
199 };
200
201 // Create a new LLM client.
202 let client = LLMClient::new(helios_engine::llm::LLMProviderType::Remote(llm_config)).await?;
203 let mut session =
204 ChatSession::new().with_system_prompt("You are a friendly and helpful AI assistant.");
205
206 println!("Chat started! Type 'exit' or 'quit' to end the conversation.\n");
207
208 loop {
209 print!("You: ");
210 io::stdout().flush()?;
211
212 let mut input = String::new();
213 io::stdin().read_line(&mut input)?;
214 let input = input.trim();
215
216 if input.is_empty() {
217 continue;
218 }
219
220 if input == "exit" || input == "quit" {
221 println!("\n👋 Goodbye!");
222 break;
223 }
224
225 // Handle special commands.
226 if input == "clear" {
227 session.clear();
228 println!("🧹 Conversation cleared!\n");
229 continue;
230 }
231
232 if input == "history" {
233 println!("\n📜 Conversation history:");
234 for (i, msg) in session.messages.iter().enumerate() {
235 println!(" {}. {:?}: {}", i + 1, msg.role, msg.content);
236 }
237 println!();
238 continue;
239 }
240
241 session.add_user_message(input);
242
243 print!("Assistant: ");
244 io::stdout().flush()?;
245
246 match client
247 .chat(session.get_messages(), None, None, None, None)
248 .await
249 {
250 Ok(response) => {
251 session.add_assistant_message(&response.content);
252 println!("{}\n", response.content);
253 }
254 Err(e) => {
255 println!("\n❌ Error: {}", e);
256 println!(" (Make sure OPENAI_API_KEY is set correctly)\n");
257 // Remove the last user message since it failed.
258 session.messages.pop();
259 }
260 }
261 }
262
263 Ok(())
264}Sourcepub async fn chat_stream<F>(
&self,
messages: Vec<ChatMessage>,
tools: Option<Vec<ToolDefinition>>,
temperature: Option<f32>,
max_tokens: Option<u32>,
stop: Option<Vec<String>>,
on_chunk: F,
) -> Result<ChatMessage>
pub async fn chat_stream<F>( &self, messages: Vec<ChatMessage>, tools: Option<Vec<ToolDefinition>>, temperature: Option<f32>, max_tokens: Option<u32>, stop: Option<Vec<String>>, on_chunk: F, ) -> Result<ChatMessage>
Sends a streaming chat request to the LLM.
Examples found in repository?
examples/streaming_chat.rs (lines 45-48)
14async fn main() -> helios_engine::Result<()> {
15 println!("🚀 Helios Engine - Streaming Example");
16 println!("=====================================\n");
17
18 // Set up the LLM configuration.
19 let llm_config = LLMConfig {
20 model_name: "gpt-3.5-turbo".to_string(),
21 base_url: "https://api.openai.com/v1".to_string(),
22 api_key: std::env::var("OPENAI_API_KEY")
23 .unwrap_or_else(|_| "your-api-key-here".to_string()),
24 temperature: 0.7,
25 max_tokens: 2048,
26 };
27
28 // Create a new LLM client.
29 let client = LLMClient::new(helios_engine::llm::LLMProviderType::Remote(llm_config)).await?;
30
31 // --- Example 1: Simple streaming response ---
32 println!("Example 1: Simple Streaming Response");
33 println!("======================================\n");
34
35 let messages = vec![
36 ChatMessage::system("You are a helpful assistant."),
37 ChatMessage::user("Write a short poem about coding."),
38 ];
39
40 print!("Assistant: ");
41 io::stdout().flush()?;
42
43 // Stream the response from the model, printing each chunk as it arrives.
44 let response = client
45 .chat_stream(messages, None, None, None, None, |chunk| {
46 print!("{}", chunk);
47 io::stdout().flush().unwrap();
48 })
49 .await?;
50
51 println!("\n\n");
52
53 // --- Example 2: Interactive streaming chat ---
54 println!("Example 2: Interactive Streaming Chat");
55 println!("======================================\n");
56
57 let mut session = ChatSession::new().with_system_prompt("You are a helpful coding assistant.");
58
59 let questions = vec![
60 "What is Rust?",
61 "What are its main benefits?",
62 "Show me a simple example.",
63 ];
64
65 for question in questions {
66 println!("User: {}", question);
67 session.add_user_message(question);
68
69 print!("Assistant: ");
70 io::stdout().flush()?;
71
72 // Stream the response, maintaining the conversation context.
73 let response = client
74 .chat_stream(session.get_messages(), None, None, None, None, |chunk| {
75 print!("{}", chunk);
76 io::stdout().flush().unwrap();
77 })
78 .await?;
79
80 session.add_assistant_message(&response.content);
81 println!("\n");
82 }
83
84 // --- Example 3: Streaming with thinking tags ---
85 println!("\nExample 3: Streaming with Thinking Tags");
86 println!("=========================================\n");
87 println!("When using models that support thinking tags (like o1),");
88 println!("you can detect and display them during streaming.\n");
89
90 /// A helper struct to track and display thinking tags in streamed responses.
91 struct ThinkingTracker {
92 in_thinking: bool,
93 thinking_buffer: String,
94 }
95
96 impl ThinkingTracker {
97 /// Creates a new `ThinkingTracker`.
98 fn new() -> Self {
99 Self {
100 in_thinking: false,
101 thinking_buffer: String::new(),
102 }
103 }
104
105 /// Processes a chunk of a streamed response and returns the processed output.
106 fn process_chunk(&mut self, chunk: &str) -> String {
107 let mut output = String::new();
108 let mut chars = chunk.chars().peekable();
109
110 while let Some(c) = chars.next() {
111 if c == '<' {
112 let remaining: String = chars.clone().collect();
113 if remaining.starts_with("thinking>") {
114 self.in_thinking = true;
115 self.thinking_buffer.clear();
116 output.push_str("\n💭 [Thinking");
117 for _ in 0..9 {
118 chars.next();
119 }
120 continue;
121 } else if remaining.starts_with("/thinking>") {
122 self.in_thinking = false;
123 output.push_str("]\n");
124 for _ in 0..10 {
125 chars.next();
126 }
127 continue;
128 }
129 }
130
131 if self.in_thinking {
132 self.thinking_buffer.push(c);
133 if self.thinking_buffer.len() % 3 == 0 {
134 output.push('.');
135 }
136 } else {
137 output.push(c);
138 }
139 }
140
141 output
142 }
143 }
144
145 let messages = vec![ChatMessage::user(
146 "Solve this problem: What is 15 * 234 + 89?",
147 )];
148
149 let mut tracker = ThinkingTracker::new();
150 print!("Assistant: ");
151 io::stdout().flush()?;
152
153 // Stream the response, processing thinking tags as they arrive.
154 let _response = client
155 .chat_stream(messages, None, None, None, None, |chunk| {
156 let output = tracker.process_chunk(chunk);
157 print!("{}", output);
158 io::stdout().flush().unwrap();
159 })
160 .await?;
161
162 println!("\n\n✅ Streaming examples completed!");
163 println!("\nKey benefits of streaming:");
164 println!(" • Real-time response display");
165 println!(" • Better user experience for long responses");
166 println!(" • Ability to show thinking/reasoning process");
167 println!(" • Early cancellation possible (future feature)");
168
169 Ok(())
170}Trait Implementations§
Source§impl LLMProvider for LLMClient
impl LLMProvider for LLMClient
Source§fn generate<'life0, 'async_trait>(
&'life0 self,
request: LLMRequest,
) -> Pin<Box<dyn Future<Output = Result<LLMResponse>> + Send + 'async_trait>>where
Self: 'async_trait,
'life0: 'async_trait,
fn generate<'life0, 'async_trait>(
&'life0 self,
request: LLMRequest,
) -> Pin<Box<dyn Future<Output = Result<LLMResponse>> + Send + 'async_trait>>where
Self: 'async_trait,
'life0: 'async_trait,
Generates a response from the LLM.
Auto Trait Implementations§
impl Freeze for LLMClient
impl !RefUnwindSafe for LLMClient
impl Send for LLMClient
impl Sync for LLMClient
impl Unpin for LLMClient
impl !UnwindSafe for LLMClient
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more