1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
use crate::{
a_sync::HdbResponse,
base::{new_am_async, InternalReturnValue, PreparedStatementCore, AM},
conn::AmConnCore,
protocol::parts::{
HdbValue, LobFlags, ParameterDescriptors, ParameterRows, ResultSetMetadata, TypeId,
},
protocol::{MessageType, Part, PartKind, Request, ServerUsage, HOLD_CURSORS_OVER_COMMIT},
types_impl::lob::async_lob_writer,
HdbError, HdbResult,
};
use std::sync::Arc;
/// Allows injection-safe SQL execution and repeated calls of the same statement
/// with different parameters with as few roundtrips as possible.
///
/// # Providing Input Parameters
///
/// ## Type systems
///
/// Type system**s**, really? Yes, there are in fact four type systems involved!
/// * Your application is written in rust, and uses the _rust type system_.
/// * `hdbconnect_async`'s _driver API_ represents values with the `enum` [`HdbValue`](crate::HdbValue);
/// this type system aims to be as close to the rust type system as possible
/// and hides the complexity of the following two internal type systems.
/// * The _wire_ has its own type system - it's focus is on efficient data transfer.
/// `hdbconnect_async` deals with these types internally.
/// * The _database type system_ consists of the standard SQL types and proprietary types
/// to represent values, like TINYINT, FLOAT, NVARCHAR, and many others.
/// This type system is NOT directly visible to `hdbconnect_async`.
///
/// [`TypeId`](crate::TypeId) enumerates a somewhat reduced superset
/// of the server-side and the wire type system.
///
/// ## From Rust types to `HdbValue`
///
/// Prepared statements typically take one or more input parameter(s).
/// As part of the statement preparation, the database server provides the client
/// with detailed metadata for these parameters, which are kept by the `PreparedStatement`.
///
/// The parameter values can be handed over to the `PreparedStatement` either as
/// `Serializable` rust types, or explicitly as [`HdbValue`](crate::HdbValue) instances.
/// If they are handed over as `Serializable` rust types, then the built-in
/// [`serde_db`](https://docs.rs/serde_db)-based
/// conversion will convert them directly into those [`HdbValue`](crate::HdbValue) variants
/// that correspond to the `TypeId` that the server has requested.
/// The application can also provide the values explicitly as [`HdbValue`](crate::HdbValue)
/// instances and by that
/// enforce the usage of a different wire type and of server-side type conversions.
///
/// ## Sending `HdbValue`s to the database
///
/// The protocol for sending values can be version-specific. Sending e.g. an
/// `HdbValue::DECIMAL` to the database occurs in different formats:
/// * with older HANA versions, a proprietary DECIMAL format is used that is independent
/// of the number range of the concrete field.
/// * In newer HANA versions, three different formats are used
/// ([`TypeId::FIXED8`](crate::TypeId::FIXED8),
/// [`TypeId::FIXED12`](crate::TypeId::FIXED12) and
/// [`TypeId::FIXED16`](crate::TypeId::FIXED16))
/// that together allow for a wider value range and a lower bandwidth.
///
/// `hdbconnect_async` cares about these details.
///
/// Similarly, an `HdbValue::STRING` is used to transfer values to all string-like wire types.
///
/// The wire protocol sometimes also allows sending data in another wire type than requested.
///
/// If the database e.g. requests an INT, you can also send a String representation of the
/// number, by using `HdbValue::STRING("1088")`, instead of the binary INT representation
/// `HdbValue::INT(1088)`.
#[derive(Debug)]
pub struct PreparedStatement {
am_ps_core: AM<PreparedStatementCore>,
server_usage: ServerUsage,
a_descriptors: Arc<ParameterDescriptors>,
o_a_rsmd: Option<Arc<ResultSetMetadata>>,
batch: ParameterRows<'static>,
_o_table_location: Option<Vec<i32>>,
}
impl<'a> PreparedStatement {
/// Converts the input into a row of parameters, and
/// executes the statement with these parameters immediately.
///
/// The row of parameters must be consistent with the input parameter metadata.
/// The input conversion is done with the help of serde, so the input must implement
/// `serde::ser::Serialize`.
///
/// ```rust,no_run
/// # tokio_test::block_on(async {
/// # use hdbconnect_async::{Connection, HdbResult, IntoConnectParams};
/// # let params = "hdbsql://my_user:my_passwd@the_host:2222"
/// # .into_connect_params()
/// # .unwrap();
/// # let mut connection = Connection::new(params).await.unwrap();
/// let mut statement = connection.prepare("select * from phrases where ID = ? and text = ?").await.unwrap();
/// let hdbresponse = statement.execute(&(42, "Foo is bar")).await.unwrap();
/// # })
/// ```
///
/// If the statement has no parameter, you can execute it like this
///
/// ```rust, no_run
/// # tokio_test::block_on(async {
/// # use hdbconnect_async::{Connection, HdbResult, IntoConnectParams, Row};
/// # let mut connection = Connection::new("".into_connect_params().unwrap()).await.unwrap();
/// # let mut stmt = connection.prepare("").await.unwrap();
/// let hdbresponse = stmt.execute(&()).await.unwrap();
/// # })
/// ```
///
/// or like this
///
/// ```rust, no_run
/// # tokio_test::block_on(async {
/// # use hdbconnect_async::{Connection, HdbResult, IntoConnectParams, Row};
/// # let mut connection = Connection::new("".into_connect_params().unwrap()).await.unwrap();
/// # let mut stmt = connection.prepare("").await.unwrap();
/// let hdbresponse = stmt.execute_batch().await.unwrap();
/// # })
/// ```
///
/// # Errors
///
/// Several variants of `HdbError` can occur.
pub async fn execute<T: serde::ser::Serialize>(&mut self, input: &T) -> HdbResult<HdbResponse> {
trace!("PreparedStatement::execute()");
if self.a_descriptors.has_in() {
let mut par_rows = ParameterRows::new();
par_rows.push(input, &self.a_descriptors)?;
return self.execute_parameter_rows(Some(par_rows)).await;
}
self.execute_parameter_rows(None).await
}
/// Consumes the given `HdbValue`s as a row of parameters for immediate execution.
///
/// In most cases
/// [`PreparedStatement::execute()`](crate::PreparedStatement::execute)
/// will be more convenient. Streaming LOBs to the database however is an important exception -
/// it only works with this method!
///
/// Note that with older versions of HANA, streaming LOBs to the database only works
/// if auto-commit is switched off. Consequently, you need to commit the update then explicitly.
///
/// ## Example for streaming LOBs to the database
///
/// The first parameter in this example inserts a string into a normal NVARCHAR column.
/// We're using a `HdbValue::STR` here which allows passing the String as reference
/// (compared to `HdbValue::STRING`, which needs to own the String).
///
/// The second parameter of type [`HdbValue::ASYNC_LOBSTREAM`](crate::HdbValue::ASYNC_LOBSTREAM)
/// wraps a shared mutable reference to a reader object
/// which is supposed to produce the content you want to store.
///
/// ``` rust, no_run
/// # tokio_test::block_on(async {
/// use hdbconnect_async::{Connection, HdbValue, HdbResult, IntoConnectParams};
/// use std::io::Cursor;
/// use std::sync::Arc;
/// use tokio::sync::Mutex;
/// # let mut connection = Connection::new("".into_connect_params().unwrap()).await.unwrap();
/// # connection.set_auto_commit(false).await.unwrap();
/// # let insert_stmt_string = "insert into TEST_NCLOBS values(?, ?)".to_owned();
/// let mut stmt = connection.prepare(&insert_stmt_string).await.unwrap();
///
/// stmt.execute_row(vec![
/// HdbValue::STR("nice descriptive text, could be quite long"),
/// HdbValue::ASYNC_LOBSTREAM(Some(Arc::new(Mutex::new(Cursor::new("foo bar"))))),
/// ]).await.unwrap();
/// # connection.commit().await.unwrap();
/// # })
/// ```
///
/// `PreparedStatement::execute_row()` first sends the specified statement to the database,
/// with the given parameter values, where `ASYNC_LOBSTREAM` instances are replaced with placeholders.
/// Subsequently the data from the readers are transferred to the database in additional
/// roundtrips. Upon completion of the last LOB chunk transfer, the database really executes
/// the procedure and returns its results.
///
/// # Errors
///
/// Several variants of `HdbError` can occur.
pub async fn execute_row(
&'a mut self,
hdb_values: Vec<HdbValue<'a>>,
) -> HdbResult<HdbResponse> {
if self.a_descriptors.has_in() {
let ps_core_guard = self.am_ps_core.lock_async().await;
let mut request = Request::new(MessageType::Execute, HOLD_CURSORS_OVER_COMMIT);
request.push(Part::StatementId(ps_core_guard.statement_id));
// If readers were provided, pick them out and replace them with None
let mut readers: Vec<(HdbValue, TypeId)> = vec![];
let hdb_values = hdb_values
.into_iter()
.zip(self.a_descriptors.iter_in())
.map(|(v, d)| {
if let HdbValue::ASYNC_LOBSTREAM(Some(_)) = v {
readers.push((v, d.type_id()));
HdbValue::ASYNC_LOBSTREAM(None)
} else {
v
}
})
.collect();
let mut par_rows = ParameterRows::new();
par_rows.push_hdb_values(hdb_values, &self.a_descriptors)?;
request.push(Part::ParameterRows(par_rows));
if ps_core_guard
.am_conn_core
.lock_async()
.await
.connect_options()
.get_implicit_lob_streaming()
{
request.push(Part::LobFlags(LobFlags::for_implicit_streaming()));
}
let mut main_reply = ps_core_guard
.am_conn_core
.full_send_async(
request,
self.o_a_rsmd.as_ref(),
Some(&self.a_descriptors),
&mut None,
)
.await?;
// if the input was not transferred completely in the same roundtrip,
// then the statement execution roundtrip cannot bring any of the expected results;
// instead, the results that belong to the procedure execution roundtrip
// will be received with the response to the last input-LOB transfer-roundtrip.
let write_lob_reply = main_reply
.parts
.remove_first_of_kind(PartKind::WriteLobReply);
let (mut internal_return_values, replytype) = (
main_reply
.parts
.into_internal_return_values_async(&ps_core_guard.am_conn_core, None)
.await?,
main_reply.replytype,
);
if let Some(Part::WriteLobReply(wlr)) = write_lob_reply {
let locator_ids = wlr.into_locator_ids();
if locator_ids.len() != readers.len() {
return Err(HdbError::UsageDetailed(format!(
"{} readers are provided, but {} are required",
readers.len(),
locator_ids.len()
)));
}
for (locator_id, (reader, type_id)) in locator_ids.into_iter().zip(readers) {
debug!("writing content to locator with id {:?}", locator_id);
if let HdbValue::ASYNC_LOBSTREAM(Some(reader)) = reader {
let mut reader = reader.lock().await;
let _amount = async_lob_writer::copy(
&mut *reader,
ps_core_guard.am_conn_core.clone(),
locator_id,
&mut internal_return_values,
type_id,
self.o_a_rsmd.as_ref(),
Some(&self.a_descriptors),
)
.await?;
}
}
}
// inject statement id
for rv in &mut internal_return_values {
if let InternalReturnValue::RsState((rs_state, _a_rsmd)) = rv {
rs_state
.inject_ps_core_async(Arc::clone(&self.am_ps_core))
.await?;
}
}
HdbResponse::try_new(internal_return_values, replytype)
} else {
self.execute_parameter_rows(None).await
}
}
/// Converts the input into a row of parameters and adds it to the batch of this
/// `PreparedStatement`, if it is consistent with the metadata.
///
/// # Errors
///
/// Several variants of `HdbError` can occur.
pub fn add_batch<T: serde::ser::Serialize>(&mut self, input: &T) -> HdbResult<()> {
trace!("PreparedStatement::add_batch()");
if self.a_descriptors.has_in() {
self.batch.push(input, &self.a_descriptors)?;
return Ok(());
}
Err(HdbError::Usage(
"Batch not usable for PreparedStatements without input parameter",
))
}
/// Consumes the input as a row of parameters for the batch.
///
/// Useful mainly for generic code.
/// In most cases [`add_batch()`](crate::PreparedStatement::add_batch)
/// is more convenient.
/// Note that LOB streaming can not be combined with using the batch.
///
/// # Errors
///
/// Several variants of `HdbError` can occur.
pub fn add_row_to_batch(&mut self, hdb_values: Vec<HdbValue<'static>>) -> HdbResult<()> {
trace!("PreparedStatement::add_row_to_batch()");
if self.a_descriptors.has_in() {
self.batch
.push_hdb_values(hdb_values, &self.a_descriptors)?;
return Ok(());
}
Err(HdbError::Usage(
"Batch not possible, PreparedStatement has no input parameter",
))
}
/// Executes the statement with the collected batch, and clears the batch.
///
/// Does nothing and returns with an error, if the statement needs input and no batch exists.
/// If the statement does not need input and the batch is empty,
/// a single execution is triggered.
///
/// # Errors
///
/// Several variants of `HdbError` can occur.
pub async fn execute_batch(&mut self) -> HdbResult<HdbResponse> {
if self.batch.is_empty() && self.a_descriptors.has_in() {
return Err(HdbError::Usage("Empty batch cannot be executed"));
}
let mut rows2 = ParameterRows::new();
std::mem::swap(&mut self.batch, &mut rows2);
self.execute_parameter_rows(Some(rows2)).await
}
/// Descriptors of all parameters of the prepared statement (in, out, inout).
#[must_use]
pub fn parameter_descriptors(&self) -> Arc<ParameterDescriptors> {
Arc::clone(&self.a_descriptors)
}
async fn execute_parameter_rows(
&mut self,
o_rows: Option<ParameterRows<'_>>,
) -> HdbResult<HdbResponse> {
trace!("PreparedStatement::execute_parameter_rows()");
let ps_core_guard = self.am_ps_core.lock_async().await;
let mut request = Request::new(MessageType::Execute, HOLD_CURSORS_OVER_COMMIT);
request.push(Part::StatementId(ps_core_guard.statement_id));
if let Some(rows) = o_rows {
request.push(Part::ParameterRows(rows));
}
let (mut internal_return_values, replytype) = ps_core_guard
.am_conn_core
.full_send_async(
request,
self.o_a_rsmd.as_ref(),
Some(&self.a_descriptors),
&mut None,
)
.await?
.into_internal_return_values_async(&ps_core_guard.am_conn_core, None)
.await?;
// inject statement id
for rv in &mut internal_return_values {
if let InternalReturnValue::RsState((rs_state, _a_rsmd)) = rv {
rs_state
.inject_ps_core_async(Arc::clone(&self.am_ps_core))
.await?;
}
}
HdbResponse::try_new(internal_return_values, replytype)
}
/// Provides information about the the server-side resource consumption that
/// is related to this `PreparedStatement` object.
#[must_use]
pub fn server_usage(&self) -> ServerUsage {
self.server_usage
}
// Prepare a statement.
pub(crate) async fn try_new(am_conn_core: AmConnCore, stmt: &str) -> HdbResult<Self> {
let mut request = Request::new(MessageType::Prepare, HOLD_CURSORS_OVER_COMMIT);
request.push(Part::Command(stmt));
let reply = am_conn_core.send_async(request).await?;
let mut o_table_location: Option<Vec<i32>> = None;
let mut o_stmt_id: Option<u64> = None;
let mut a_descriptors: Arc<ParameterDescriptors> =
Arc::new(ParameterDescriptors::default());
let mut o_a_rsmd: Option<Arc<ResultSetMetadata>> = None;
let mut server_usage = ServerUsage::default();
for part in reply.parts {
match part {
Part::ParameterMetadata(descriptors) => {
a_descriptors = Arc::new(descriptors);
}
Part::StatementId(id) => {
o_stmt_id = Some(id);
}
Part::TransactionFlags(ta_flags) => {
let mut guard = am_conn_core.lock_async().await;
(*guard).evaluate_ta_flags(ta_flags)?;
}
Part::TableLocation(vec_i) => {
o_table_location = Some(vec_i);
}
Part::ResultSetMetadata(rs_md) => {
o_a_rsmd = Some(Arc::new(rs_md));
}
Part::StatementContext(ref stmt_ctx) => {
let mut guard = am_conn_core.lock_async().await;
(*guard).evaluate_statement_context(stmt_ctx);
server_usage.update(
stmt_ctx.server_processing_time(),
stmt_ctx.server_cpu_time(),
stmt_ctx.server_memory_usage(),
);
}
x => warn!("try_new(): Unexpected reply part found {:?}", x),
}
}
let statement_id = o_stmt_id.ok_or_else(|| HdbError::Impl("No StatementId received"))?;
let am_ps_core = new_am_async(PreparedStatementCore {
am_conn_core,
statement_id,
});
debug!(
"PreparedStatement created with parameter descriptors = {:?}",
a_descriptors
);
Ok(Self {
am_ps_core,
server_usage,
batch: ParameterRows::new(),
a_descriptors,
o_a_rsmd,
_o_table_location: o_table_location,
})
}
}