[−][src]Struct hcomplex::Construct
Cayley–Dickson construction, a basic building block.
Structure takes two type parameters:
+ The first one, T
: a scalar type the algebra is built over.
+ The second one, U
: is a type of two components of the construction: re
and im
.
Implementations
impl<T, U> Construct<T, U>
[src]
pub fn new(re: U, im: U) -> Self
[src]
Create from real and imaginary parts.
pub fn split(self) -> (U, U)
[src]
Split by real and imaginary parts.
pub fn re_ref(&self) -> &U
[src]
pub fn im_ref(&self) -> &U
[src]
pub fn re_mut(&mut self) -> &mut U
[src]
pub fn im_mut(&mut self) -> &mut U
[src]
impl<T, U> Construct<T, U> where
U: Clone,
[src]
U: Clone,
impl<T, U> Construct<T, U> where
Self: Clone + Norm<Output = T> + Div<T, Output = Self>,
[src]
Self: Clone + Norm<Output = T> + Div<T, Output = Self>,
impl<T, U> Construct<T, Construct<T, U>>
[src]
impl<T, U> Construct<T, Construct<T, U>> where
U: Clone,
Construct<T, U>: Clone,
[src]
U: Clone,
Construct<T, U>: Clone,
pub fn w(&self) -> U
[src]
pub fn x(&self) -> U
[src]
pub fn y(&self) -> U
[src]
pub fn z(&self) -> U
[src]
impl<T, U> Construct<T, Construct<T, U>>
[src]
pub fn w_ref(&self) -> &U
[src]
pub fn x_ref(&self) -> &U
[src]
pub fn y_ref(&self) -> &U
[src]
pub fn z_ref(&self) -> &U
[src]
pub fn w_mut(&mut self) -> &mut U
[src]
pub fn x_mut(&mut self) -> &mut U
[src]
pub fn y_mut(&mut self) -> &mut U
[src]
pub fn z_mut(&mut self) -> &mut U
[src]
impl<T: Float> Construct<T, T>
[src]
pub fn into_num(self) -> NumComplex<T>
[src]
Convert into num_complex::Complex
struct.
pub fn arg(self) -> T
[src]
Calculate the principal Arg of self.
pub fn exp(self) -> Self
[src]
Computes e^(self)
, where e
is the base of the natural logarithm.
pub fn ln(self) -> Self
[src]
Computes the principal value of natural logarithm of self
.
pub fn sqrt(self) -> Self
[src]
Computes the principal value of the square root of self
.
pub fn cbrt(self) -> Self
[src]
Computes the principal value of the cube root of self
.
Note that this does not match the usual result for the cube root of negative real numbers.
For example, the real cube root of -8
is -2
, but the principal complex cube root of -8
is 1 + i√3
.
pub fn powu(self, exp: u32) -> Self
[src]
Raises self
to an unsigned integer power.
pub fn powi(self, exp: i32) -> Self
[src]
Raises self
to a signed integer power.
pub fn powf(self, exp: T) -> Self
[src]
Raises self
to a floating point power.
pub fn powc(self, exp: Self) -> Self
[src]
Raises self
to a complex power.
pub fn log(self, base: T) -> Self
[src]
Returns the logarithm of self
with respect to an arbitrary base.
pub fn expf(self, base: T) -> Self
[src]
Raises a floating point number to the complex power self
.
pub fn sin(self) -> Self
[src]
Computes the sine of self
.
pub fn cos(self) -> Self
[src]
Computes the cosine of self
.
pub fn tan(self) -> Self
[src]
Computes the tangent of self
.
pub fn asin(self) -> Self
[src]
Computes the principal value of the inverse sine of self
.
pub fn acos(self) -> Self
[src]
Computes the principal value of the inverse cosine of self
.
pub fn atan(self) -> Self
[src]
Computes the principal value of the inverse tangent of self
.
pub fn sinh(self) -> Self
[src]
Computes the hyperbolic sine of self
.
pub fn cosh(self) -> Self
[src]
Computes the hyperbolic cosine of self
.
pub fn tanh(self) -> Self
[src]
Computes the hyperbolic tangent of self
.
pub fn asinh(self) -> Self
[src]
Computes the principal value of the inverse hyperbolic sine of self
.
pub fn acosh(self) -> Self
[src]
Computes the principal value of the inverse hyperbolic cosine of self
.
pub fn atanh(self) -> Self
[src]
Computes the principal value of the inverse hyperbolic tangent of self
.
pub fn finv(self) -> Self
[src]
Returns 1/self
using floating-point operations.
impl<T: Float + Clone> Construct<T, T> where
Self: Norm<Output = T>,
[src]
Self: Norm<Output = T>,
pub fn to_polar(self) -> (T, T)
[src]
Convert to polar form.
pub fn from_polar(r: T, theta: T) -> Self
[src]
Convert a polar representation into a complex number.
impl<T: One + Zero> Construct<T, T>
[src]
impl<T: One + Zero> Construct<T, Construct<T, T>>
[src]
Trait Implementations
impl<T: Clone, U> AbsDiffEq<Construct<T, U>> for Construct<T, U> where
T: AbsDiffEq<Epsilon = T>,
U: AbsDiffEq<Epsilon = T>,
[src]
T: AbsDiffEq<Epsilon = T>,
U: AbsDiffEq<Epsilon = T>,
type Epsilon = T
Used for specifying relative comparisons.
pub fn default_epsilon() -> Self::Epsilon
[src]
pub fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool
[src]
pub fn abs_diff_ne(&self, other: &Rhs, epsilon: Self::Epsilon) -> bool
[src]
impl<T, U> Add<Construct<T, Construct<T, U>>> for Construct<T, U> where
Construct<T, U>: Add<Output = Construct<T, U>>,
[src]
Construct<T, U>: Add<Output = Construct<T, U>>,
type Output = Construct<T, Construct<T, U>>
The resulting type after applying the +
operator.
pub fn add(self, other: Construct<T, Construct<T, U>>) -> Self::Output
[src]
impl<T, U> Add<Construct<T, U>> for Construct<T, U> where
U: Add<Output = U>,
[src]
U: Add<Output = U>,
type Output = Self
The resulting type after applying the +
operator.
pub fn add(self, other: Self) -> Self::Output
[src]
impl<T, U> Add<Construct<T, U>> for Construct<T, Construct<T, U>> where
Construct<T, U>: Add<Output = Construct<T, U>>,
[src]
Construct<T, U>: Add<Output = Construct<T, U>>,
type Output = Self
The resulting type after applying the +
operator.
pub fn add(self, other: Construct<T, U>) -> Self::Output
[src]
impl<U> Add<Construct<f32, U>> for f32 where
Construct<f32, U>: Add<f32, Output = Construct<f32, U>>,
[src]
Construct<f32, U>: Add<f32, Output = Construct<f32, U>>,
Workaround for reverse addition.
type Output = Construct<f32, U>
The resulting type after applying the +
operator.
pub fn add(self, other: Construct<f32, U>) -> Self::Output
[src]
impl<U> Add<Construct<f64, U>> for f64 where
Construct<f64, U>: Add<f64, Output = Construct<f64, U>>,
[src]
Construct<f64, U>: Add<f64, Output = Construct<f64, U>>,
Workaround for reverse addition.
type Output = Construct<f64, U>
The resulting type after applying the +
operator.
pub fn add(self, other: Construct<f64, U>) -> Self::Output
[src]
impl<T, U> Add<T> for Construct<T, U> where
U: Add<T, Output = U>,
[src]
U: Add<T, Output = U>,
type Output = Self
The resulting type after applying the +
operator.
pub fn add(self, other: T) -> Self::Output
[src]
impl<T, U> AddAssign<Construct<T, U>> for Construct<T, U> where
U: AddAssign,
[src]
U: AddAssign,
pub fn add_assign(&mut self, other: Self)
[src]
impl<T, U> AddAssign<Construct<T, U>> for Construct<T, Construct<T, U>> where
Construct<T, U>: AddAssign,
[src]
Construct<T, U>: AddAssign,
pub fn add_assign(&mut self, other: Construct<T, U>)
[src]
impl<T, U> AddAssign<T> for Construct<T, U> where
U: AddAssign<T>,
[src]
U: AddAssign<T>,
pub fn add_assign(&mut self, other: T)
[src]
impl<T, U> Algebra<T> for Construct<T, U> where
T: Algebra + Clone,
U: Algebra<T> + Clone,
[src]
T: Algebra + Clone,
U: Algebra<T> + Clone,
impl<T: Clone, U: Clone> Clone for Construct<T, U>
[src]
impl<T, U> Conj for Construct<T, U> where
U: Conj + Neg<Output = U>,
[src]
U: Conj + Neg<Output = U>,
impl<T: Copy, U: Copy> Copy for Construct<T, U>
[src]
impl<T: Debug, U> Debug for Construct<T, U> where
Self: Format<T>,
[src]
Self: Format<T>,
impl<T: Algebra + Clone> Deriv<Construct<T, T>> for Moebius<Complex<T>>
[src]
impl<T: NumCast + Algebra + Dot<Output = T> + Clone> DerivDir<Construct<T, Construct<T, T>>> for Moebius<Complex<T>>
[src]
pub fn deriv_dir(&self, p: Quaternion<T>, v: Quaternion<T>) -> Quaternion<T>
[src]
impl<T: Display, U> Display for Construct<T, U> where
Self: Format<T>,
[src]
Self: Format<T>,
impl<T, U> Distribution<Construct<T, U>> for StandardNormal where
StandardNormal: Distribution<U>,
[src]
StandardNormal: Distribution<U>,
pub fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Construct<T, U>
[src]
pub fn sample_iter<R>(self, rng: R) -> DistIter<Self, R, T> where
R: Rng,
[src]
R: Rng,
impl<T: Float, U: NormSqr<Output = T> + Clone> Distribution<Construct<T, U>> for NonZero where
StandardNormal: Distribution<Construct<T, U>>,
[src]
StandardNormal: Distribution<Construct<T, U>>,
pub fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Construct<T, U>
[src]
pub fn sample_iter<R>(self, rng: R) -> DistIter<Self, R, T> where
R: Rng,
[src]
R: Rng,
impl<T: Float, U: NormSqr<Output = T> + Div<T, Output = U> + Clone> Distribution<Construct<T, U>> for Unit where
NonZero: Distribution<Construct<T, U>>,
[src]
NonZero: Distribution<Construct<T, U>>,
pub fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Construct<T, U>
[src]
pub fn sample_iter<R>(self, rng: R) -> DistIter<Self, R, T> where
R: Rng,
[src]
R: Rng,
impl<T, U> Div<Construct<T, Construct<T, U>>> for Construct<T, U> where
Construct<T, Self>: Inv<Output = Construct<T, Self>>,
Self: Mul<Construct<T, Self>, Output = Construct<T, Self>>,
[src]
Construct<T, Self>: Inv<Output = Construct<T, Self>>,
Self: Mul<Construct<T, Self>, Output = Construct<T, Self>>,
type Output = Construct<T, Construct<T, U>>
The resulting type after applying the /
operator.
pub fn div(self, other: Construct<T, Construct<T, U>>) -> Self::Output
[src]
impl<T, U> Div<Construct<T, U>> for Construct<T, U> where
Self: Inv<Output = Self> + Mul<Output = Self>,
[src]
Self: Inv<Output = Self> + Mul<Output = Self>,
type Output = Self
The resulting type after applying the /
operator.
pub fn div(self, other: Self) -> Self::Output
[src]
impl<T, U> Div<Construct<T, U>> for Construct<T, Construct<T, U>> where
Construct<T, U>: Div<Output = Construct<T, U>> + Clone,
[src]
Construct<T, U>: Div<Output = Construct<T, U>> + Clone,
type Output = Self
The resulting type after applying the /
operator.
pub fn div(self, other: Construct<T, U>) -> Self::Output
[src]
impl<U> Div<Construct<f32, U>> for f32 where
Construct<f32, U>: Inv<Output = Construct<f32, U>> + Mul<f32, Output = Construct<f32, U>> + Clone,
[src]
Construct<f32, U>: Inv<Output = Construct<f32, U>> + Mul<f32, Output = Construct<f32, U>> + Clone,
Workaround for reverse division.
type Output = Construct<f32, U>
The resulting type after applying the /
operator.
pub fn div(self, other: Construct<f32, U>) -> Self::Output
[src]
impl<U> Div<Construct<f64, U>> for f64 where
Construct<f64, U>: Inv<Output = Construct<f64, U>> + Mul<f64, Output = Construct<f64, U>> + Clone,
[src]
Construct<f64, U>: Inv<Output = Construct<f64, U>> + Mul<f64, Output = Construct<f64, U>> + Clone,
Workaround for reverse division.
type Output = Construct<f64, U>
The resulting type after applying the /
operator.
pub fn div(self, other: Construct<f64, U>) -> Self::Output
[src]
impl<T, U> Div<T> for Construct<T, U> where
T: Clone,
U: Div<T, Output = U>,
[src]
T: Clone,
U: Div<T, Output = U>,
type Output = Self
The resulting type after applying the /
operator.
pub fn div(self, other: T) -> Self::Output
[src]
impl<T, U> DivAssign<Construct<T, U>> for Construct<T, U> where
Self: Clone + Div<Output = Self>,
[src]
Self: Clone + Div<Output = Self>,
pub fn div_assign(&mut self, other: Self)
[src]
impl<T, U> DivAssign<Construct<T, U>> for Construct<T, Construct<T, U>> where
Self: Div<Construct<T, U>, Output = Self> + Clone,
[src]
Self: Div<Construct<T, U>, Output = Self> + Clone,
pub fn div_assign(&mut self, other: Construct<T, U>)
[src]
impl<T, U> DivAssign<T> for Construct<T, U> where
Self: Clone + Div<T, Output = Self>,
[src]
Self: Clone + Div<T, Output = Self>,
pub fn div_assign(&mut self, other: T)
[src]
impl<T, U> Dot for Construct<T, U> where
T: Add<Output = T>,
U: Dot<Output = T>,
[src]
T: Add<Output = T>,
U: Dot<Output = T>,
impl<T, U> Format<T> for Construct<T, Construct<T, U>> where
Construct<T, U>: Format<T>,
[src]
Construct<T, U>: Format<T>,
pub fn level() -> usize
[src]
pub fn write_content_debug(&self, f: &mut Formatter<'_>) -> FmtResult where
T: Debug,
[src]
T: Debug,
pub fn write_content_display(&self, f: &mut Formatter<'_>) -> FmtResult where
T: Display,
[src]
T: Display,
pub fn write_name(f: &mut Formatter<'_>) -> FmtResult
[src]
impl<T> Format<T> for Construct<T, T>
[src]
pub fn level() -> usize
[src]
pub fn write_content_debug(&self, f: &mut Formatter<'_>) -> FmtResult where
T: Debug,
[src]
T: Debug,
pub fn write_content_display(&self, f: &mut Formatter<'_>) -> FmtResult where
T: Display,
[src]
T: Display,
pub fn write_name(f: &mut Formatter<'_>) -> FmtResult
[src]
impl<T, U> Inv for Construct<T, U> where
Self: Clone + Conj + NormSqr<Output = T> + Div<T, Output = Self>,
[src]
Self: Clone + Conj + NormSqr<Output = T> + Div<T, Output = Self>,
impl<T, U> Mul<Construct<T, Construct<T, U>>> for Construct<T, U> where
Construct<T, U>: Mul<Output = Construct<T, U>> + Clone,
[src]
Construct<T, U>: Mul<Output = Construct<T, U>> + Clone,
type Output = Construct<T, Construct<T, U>>
The resulting type after applying the *
operator.
pub fn mul(self, other: Construct<T, Construct<T, U>>) -> Self::Output
[src]
impl<T, U> Mul<Construct<T, U>> for Construct<T, U> where
U: Clone + Conj + Mul<Output = U> + Add<Output = U> + Sub<Output = U>,
[src]
U: Clone + Conj + Mul<Output = U> + Add<Output = U> + Sub<Output = U>,
type Output = Self
The resulting type after applying the *
operator.
pub fn mul(self, other: Self) -> Self::Output
[src]
impl<T, U> Mul<Construct<T, U>> for Construct<T, Construct<T, U>> where
Construct<T, U>: Mul<Output = Construct<T, U>> + Clone,
[src]
Construct<T, U>: Mul<Output = Construct<T, U>> + Clone,
type Output = Self
The resulting type after applying the *
operator.
pub fn mul(self, other: Construct<T, U>) -> Self::Output
[src]
impl<U> Mul<Construct<f32, U>> for f32 where
Construct<f32, U>: Mul<f32, Output = Construct<f32, U>>,
[src]
Construct<f32, U>: Mul<f32, Output = Construct<f32, U>>,
Workaround for reverse multiplication.
type Output = Construct<f32, U>
The resulting type after applying the *
operator.
pub fn mul(self, other: Construct<f32, U>) -> Self::Output
[src]
impl<U> Mul<Construct<f64, U>> for f64 where
Construct<f64, U>: Mul<f64, Output = Construct<f64, U>>,
[src]
Construct<f64, U>: Mul<f64, Output = Construct<f64, U>>,
Workaround for reverse multiplication.
type Output = Construct<f64, U>
The resulting type after applying the *
operator.
pub fn mul(self, other: Construct<f64, U>) -> Self::Output
[src]
impl<T, U> Mul<T> for Construct<T, U> where
T: Clone,
U: Mul<T, Output = U>,
[src]
T: Clone,
U: Mul<T, Output = U>,
type Output = Self
The resulting type after applying the *
operator.
pub fn mul(self, other: T) -> Self::Output
[src]
impl<T, U> MulAssign<Construct<T, U>> for Construct<T, U> where
Self: Clone + Mul<Output = Self>,
[src]
Self: Clone + Mul<Output = Self>,
pub fn mul_assign(&mut self, other: Self)
[src]
impl<T, U> MulAssign<Construct<T, U>> for Construct<T, Construct<T, U>> where
Self: Mul<Construct<T, U>, Output = Self> + Clone,
[src]
Self: Mul<Construct<T, U>, Output = Self> + Clone,
pub fn mul_assign(&mut self, other: Construct<T, U>)
[src]
impl<T, U> MulAssign<T> for Construct<T, U> where
Self: Clone + Mul<T, Output = Self>,
[src]
Self: Clone + Mul<T, Output = Self>,
pub fn mul_assign(&mut self, other: T)
[src]
impl<T, U> Neg for Construct<T, U> where
U: Neg<Output = U>,
[src]
U: Neg<Output = U>,
impl<T, U> Norm for Construct<T, U> where
T: Float,
Self: NormSqr<Output = T>,
[src]
T: Float,
Self: NormSqr<Output = T>,
impl<T, U> NormL1 for Construct<T, U> where
T: Add<Output = T>,
U: NormL1<Output = T>,
[src]
T: Add<Output = T>,
U: NormL1<Output = T>,
impl<T, U> NormSqr for Construct<T, U> where
T: Add<Output = T>,
U: NormSqr<Output = T>,
[src]
T: Add<Output = T>,
U: NormSqr<Output = T>,
impl<T: Num + Algebra + Clone, U: Num + Algebra<T> + Clone> Num for Construct<T, U>
[src]
Not implemented yet.
type FromStrRadixErr = ()
pub fn from_str_radix(
_str: &str,
_radix: u32
) -> Result<Self, Self::FromStrRadixErr>
[src]
_str: &str,
_radix: u32
) -> Result<Self, Self::FromStrRadixErr>
impl<T, U> One for Construct<T, U> where
U: Zero + One,
Self: Mul<Output = Self>,
[src]
U: Zero + One,
Self: Mul<Output = Self>,
pub fn one() -> Self
[src]
pub fn set_one(&mut self)
[src]
pub fn is_one(&self) -> bool where
Self: PartialEq<Self>,
[src]
Self: PartialEq<Self>,
impl<T: PartialEq, U: PartialEq> PartialEq<Construct<T, U>> for Construct<T, U>
[src]
pub fn eq(&self, other: &Construct<T, U>) -> bool
[src]
pub fn ne(&self, other: &Construct<T, U>) -> bool
[src]
impl<T: Clone, U> RelativeEq<Construct<T, U>> for Construct<T, U> where
T: RelativeEq<Epsilon = T>,
U: RelativeEq<Epsilon = T>,
[src]
T: RelativeEq<Epsilon = T>,
U: RelativeEq<Epsilon = T>,
pub fn default_max_relative() -> Self::Epsilon
[src]
pub fn relative_eq(
&self,
other: &Self,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon
) -> bool
[src]
&self,
other: &Self,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon
) -> bool
pub fn relative_ne(
&self,
other: &Rhs,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon
) -> bool
[src]
&self,
other: &Rhs,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon
) -> bool
impl<T: Num + Algebra + Clone, U: Num + Algebra<T> + Clone> Rem<Construct<T, U>> for Construct<T, U>
[src]
Not implemented yet.
type Output = Self
The resulting type after applying the %
operator.
pub fn rem(self, _other: Self) -> Self::Output
[src]
impl<T, U> StructuralPartialEq for Construct<T, U>
[src]
impl<T, U> Sub<Construct<T, Construct<T, U>>> for Construct<T, U> where
Construct<T, U>: Sub<Output = Construct<T, U>>,
[src]
Construct<T, U>: Sub<Output = Construct<T, U>>,
type Output = Construct<T, Construct<T, U>>
The resulting type after applying the -
operator.
pub fn sub(self, other: Construct<T, Construct<T, U>>) -> Self::Output
[src]
impl<T, U> Sub<Construct<T, U>> for Construct<T, U> where
U: Sub<Output = U>,
[src]
U: Sub<Output = U>,
type Output = Self
The resulting type after applying the -
operator.
pub fn sub(self, other: Self) -> Self::Output
[src]
impl<T, U> Sub<Construct<T, U>> for Construct<T, Construct<T, U>> where
Construct<T, U>: Sub<Output = Construct<T, U>>,
[src]
Construct<T, U>: Sub<Output = Construct<T, U>>,
type Output = Self
The resulting type after applying the -
operator.
pub fn sub(self, other: Construct<T, U>) -> Self::Output
[src]
impl<U> Sub<Construct<f32, U>> for f32 where
Construct<f32, U>: Neg<Output = Construct<f32, U>> + Add<f32, Output = Construct<f32, U>>,
[src]
Construct<f32, U>: Neg<Output = Construct<f32, U>> + Add<f32, Output = Construct<f32, U>>,
Workaround for reverse subtraction.
type Output = Construct<f32, U>
The resulting type after applying the -
operator.
pub fn sub(self, other: Construct<f32, U>) -> Self::Output
[src]
impl<U> Sub<Construct<f64, U>> for f64 where
Construct<f64, U>: Neg<Output = Construct<f64, U>> + Add<f64, Output = Construct<f64, U>>,
[src]
Construct<f64, U>: Neg<Output = Construct<f64, U>> + Add<f64, Output = Construct<f64, U>>,
Workaround for reverse subtraction.
type Output = Construct<f64, U>
The resulting type after applying the -
operator.
pub fn sub(self, other: Construct<f64, U>) -> Self::Output
[src]
impl<T, U> Sub<T> for Construct<T, U> where
U: Sub<T, Output = U>,
[src]
U: Sub<T, Output = U>,
type Output = Self
The resulting type after applying the -
operator.
pub fn sub(self, other: T) -> Self::Output
[src]
impl<T, U> SubAssign<Construct<T, U>> for Construct<T, U> where
U: SubAssign,
[src]
U: SubAssign,
pub fn sub_assign(&mut self, other: Self)
[src]
impl<T, U> SubAssign<Construct<T, U>> for Construct<T, Construct<T, U>> where
Construct<T, U>: SubAssign,
[src]
Construct<T, U>: SubAssign,
pub fn sub_assign(&mut self, other: Construct<T, U>)
[src]
impl<T, U> SubAssign<T> for Construct<T, U> where
U: SubAssign<T>,
[src]
U: SubAssign<T>,
pub fn sub_assign(&mut self, other: T)
[src]
impl<T: Algebra + Clone, U: Algebra<T> + Clone> Transform<Construct<T, Construct<T, U>>> for Moebius<Construct<T, U>>
[src]
impl<T: Clone, U> UlpsEq<Construct<T, U>> for Construct<T, U> where
T: UlpsEq<Epsilon = T>,
U: UlpsEq<Epsilon = T>,
[src]
T: UlpsEq<Epsilon = T>,
U: UlpsEq<Epsilon = T>,
pub fn default_max_ulps() -> u32
[src]
pub fn ulps_eq(
&self,
other: &Self,
epsilon: Self::Epsilon,
max_ulps: u32
) -> bool
[src]
&self,
other: &Self,
epsilon: Self::Epsilon,
max_ulps: u32
) -> bool
pub fn ulps_ne(
&self,
other: &Rhs,
epsilon: Self::Epsilon,
max_ulps: u32
) -> bool
[src]
&self,
other: &Rhs,
epsilon: Self::Epsilon,
max_ulps: u32
) -> bool
impl<T, U> Zero for Construct<T, U> where
U: Zero,
[src]
U: Zero,
Auto Trait Implementations
impl<T, U> RefUnwindSafe for Construct<T, U> where
T: RefUnwindSafe,
U: RefUnwindSafe,
T: RefUnwindSafe,
U: RefUnwindSafe,
impl<T, U> Send for Construct<T, U> where
T: Send,
U: Send,
T: Send,
U: Send,
impl<T, U> Sync for Construct<T, U> where
T: Sync,
U: Sync,
T: Sync,
U: Sync,
impl<T, U> Unpin for Construct<T, U> where
T: Unpin,
U: Unpin,
T: Unpin,
U: Unpin,
impl<T, U> UnwindSafe for Construct<T, U> where
T: UnwindSafe,
U: UnwindSafe,
T: UnwindSafe,
U: UnwindSafe,
Blanket Implementations
impl<T> Any for T where
T: 'static + ?Sized,
[src]
T: 'static + ?Sized,
impl<T> Borrow<T> for T where
T: ?Sized,
[src]
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
[src]
T: ?Sized,
pub fn borrow_mut(&mut self) -> &mut T
[src]
impl<T> From<T> for T
[src]
impl<T, U> Into<U> for T where
U: From<T>,
[src]
U: From<T>,
impl<T, Rhs, Output> NumOps<Rhs, Output> for T where
T: Sub<Rhs, Output = Output> + Mul<Rhs, Output = Output> + Div<Rhs, Output = Output> + Add<Rhs, Output = Output> + Rem<Rhs, Output = Output>,
[src]
T: Sub<Rhs, Output = Output> + Mul<Rhs, Output = Output> + Div<Rhs, Output = Output> + Add<Rhs, Output = Output> + Rem<Rhs, Output = Output>,
impl<T> ToOwned for T where
T: Clone,
[src]
T: Clone,
type Owned = T
The resulting type after obtaining ownership.
pub fn to_owned(&self) -> T
[src]
pub fn clone_into(&self, target: &mut T)
[src]
impl<T> ToString for T where
T: Display + ?Sized,
[src]
T: Display + ?Sized,
impl<T, U> TryFrom<U> for T where
U: Into<T>,
[src]
U: Into<T>,
type Error = Infallible
The type returned in the event of a conversion error.
pub fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>
[src]
impl<T, U> TryInto<U> for T where
U: TryFrom<T>,
[src]
U: TryFrom<T>,
type Error = <U as TryFrom<T>>::Error
The type returned in the event of a conversion error.
pub fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>
[src]
impl<V, T> VZip<V> for T where
V: MultiLane<T>,
V: MultiLane<T>,