1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
//! Pseudorandom number utilities for HashX's program generator
//!
//! HashX uses pseudorandom numbers to make individual decisions in the program
//! generation process. The program generator consumes u8 and u32 values that
//! use a shared u64 generator, implemented using SipHash1,3.
//!
//! We use the [`RngCore`] trait for this underlying u64 generator,
//! allowing substitute random number generators for testing or for special
//! purposes that don't require compatibility with HashX proper.
//!
//! The stateful u8 and u32 layer comes from this module's ['RngBuffer'].
//! It's important for the u8 and u32 queues to share a common generator.
//! The order of dequeueing u8 items vs u32 items intentionally modifies the
//! assignment of particular u64 [`RngCore`] values to the two queues.
use crate::siphash::{siphash13_ctr, SipState};
use arrayvec::ArrayVec;
use rand_core::RngCore;
/// Wrap a [`RngCore`] implementation for fast `u8` and `u32` output.
///
/// This maintains small queues for each data type: up to one `u32` and up to
/// 7 bytes. The queueing behavior matches convenions required by HashX:
/// The underlying `u64` values are always generated lazily, and component
/// values are extracted in big endian order.
#[derive(Debug)]
pub(crate) struct RngBuffer<'a, T: RngCore> {
/// Inner [`RngCore`] implementation
inner: &'a mut T,
/// Buffer of remaining u8 values from breaking up a u64
u8_vec: ArrayVec<u8, 7>,
/// Up to one buffered u32 value
u32_opt: Option<u32>,
}
impl<'a, T: RngCore> RngBuffer<'a, T> {
/// Construct a new empty buffer around a [`RngCore`] implementation.
///
/// No actual random numbers will be generated until the first call to
/// [`Self::next_u8`] or [`Self::next_u32`].
#[inline(always)]
pub(crate) fn new(rng: &'a mut T) -> Self {
Self {
inner: rng,
u8_vec: Default::default(),
u32_opt: None,
}
}
/// Request 32 bits from the buffered random number generator.
///
/// If we have buffered data stored, returns that. If not,
/// requests 64 bits from the [`RngCore`] and saves half for later.
#[inline(always)]
pub(crate) fn next_u32(&mut self) -> u32 {
let previous = self.u32_opt;
match previous {
Some(value) => {
self.u32_opt = None;
value
}
None => {
let value = self.inner.next_u64();
self.u32_opt = Some(value as u32);
(value >> 32) as u32
}
}
}
/// Request 8 bits from the buffered random number generator.
///
/// If we have buffered data stored, returns that. If not,
/// requests 64 bits from the [`RngCore`] and saves 7 bytes for later.
#[inline(always)]
pub(crate) fn next_u8(&mut self) -> u8 {
let value = self.u8_vec.pop();
match value {
Some(value) => value,
None => {
// Little endian (reversed) order here,
// because we dequeue items from the end of the Vec.
let bytes = self.inner.next_u64().to_le_bytes();
let (last, saved) = bytes.split_last().expect("u64 has nonzero length");
self.u8_vec
.try_extend_from_slice(saved)
.expect("slice length correct");
*last
}
}
}
}
/// HashX-style random number generator built on SipHash1,3
///
/// This is an implementation of [`RngCore`] using SipHash1,3 as
/// the 64-bit PRNG layer needed by HashX's program generator.
#[derive(Debug, Clone)]
pub struct SipRand {
/// SipHash state vector used as input to SipHash1,3 in counter mode
key: SipState,
/// Next unused counter value
counter: u64,
}
impl SipRand {
/// Build a new SipHash random number generator.
///
/// The internal SipHash1,3 generator is initialized to a supplied
/// internal state, and the counter is reset to zero.
#[inline(always)]
pub fn new(key: SipState) -> Self {
Self::new_with_counter(key, 0)
}
/// Build a new [`SipRand`] with a specific initial counter value.
#[inline(always)]
pub fn new_with_counter(key: SipState, counter: u64) -> Self {
Self { key, counter }
}
}
impl RngCore for SipRand {
/// Generate a full 64-bit random result using SipHash1,3.
fn next_u64(&mut self) -> u64 {
let value = siphash13_ctr(self.key, self.counter);
self.counter += 1;
value
}
/// Return a 32-bit value by discarding the upper half of a 64-bit result.
fn next_u32(&mut self) -> u32 {
self.next_u64() as u32
}
/// Fill `dest` with random data.
fn fill_bytes(&mut self, dest: &mut [u8]) {
rand_core::impls::fill_bytes_via_next(self, dest);
}
/// Fill `dest` with random data.
///
/// Always succeeds.
fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), rand_core::Error> {
self.fill_bytes(dest);
Ok(())
}
}
#[cfg(test)]
mod test {
use super::{RngBuffer, SipRand, SipState};
#[test]
fn rng_vectors() {
// Check against pseudorandom number streams seen during tor unit tests
let (key0, _key1) = SipState::pair_from_seed(b"abc");
let mut rng_inner = SipRand::new(key0);
let mut rng = RngBuffer::new(&mut rng_inner);
#[derive(Debug, PartialEq)]
enum Value {
U32(u32),
U8(u8),
}
let expected = vec![
Value::U32(0xf695edd0),
Value::U32(0x2205449d),
Value::U32(0x51c1ac51),
Value::U32(0xcd19a7d1),
Value::U8(0xad),
Value::U32(0x79793a52),
Value::U32(0xd965083d),
Value::U8(0xf4),
Value::U32(0x915e9969),
Value::U32(0x7563b6e2),
Value::U32(0x4e5a9d8b),
Value::U32(0xef2bb9ce),
Value::U8(0xcb),
Value::U32(0xa4beee16),
Value::U32(0x78fa6e6f),
Value::U8(0x30),
Value::U32(0xc321cb9f),
Value::U32(0xbbf29635),
Value::U32(0x919450f4),
Value::U32(0xf3d8f358),
Value::U8(0x3b),
Value::U32(0x818a72e9),
Value::U32(0x58225fcf),
Value::U8(0x98),
Value::U32(0x3fcb5059),
Value::U32(0xaf5bcb70),
Value::U8(0x14),
Value::U32(0xd41e0326),
Value::U32(0xe79aebc6),
Value::U32(0xa348672c),
Value::U8(0xcf),
Value::U32(0x5d51b520),
Value::U32(0x73afc36f),
Value::U32(0x31348711),
Value::U32(0xca25b040),
Value::U32(0x3700c37b),
Value::U8(0x62),
Value::U32(0xf0d1d6a6),
Value::U32(0xc1edebf3),
Value::U8(0x9d),
Value::U32(0x9bb1f33f),
Value::U32(0xf1309c95),
Value::U32(0x0797718a),
Value::U32(0xa3bbcf7e),
Value::U8(0x80),
Value::U8(0x28),
Value::U8(0xe9),
Value::U8(0x2e),
Value::U32(0xf5506289),
Value::U32(0x97b46d7c),
Value::U8(0x64),
Value::U32(0xc99fe4ad),
Value::U32(0x6e756189),
Value::U8(0x54),
Value::U8(0xf7),
Value::U8(0x0f),
Value::U8(0x7d),
Value::U32(0x38c983eb),
];
let mut actual = Vec::new();
for item in &expected {
match item {
Value::U8(_) => actual.push(Value::U8(rng.next_u8())),
Value::U32(_) => actual.push(Value::U32(rng.next_u32())),
}
}
assert_eq!(expected, actual);
}
}