hashbrown 0.6.0

A Rust port of Google's SwissTable hash map
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
use crate::alloc::alloc::{alloc, dealloc, handle_alloc_error};
use crate::scopeguard::guard;
use crate::CollectionAllocErr;
use core::alloc::Layout;
use core::hint;
use core::iter::FusedIterator;
use core::marker::PhantomData;
use core::mem;
use core::mem::ManuallyDrop;
use core::ptr::NonNull;

cfg_if! {
    // Use the SSE2 implementation if possible: it allows us to scan 16 buckets
    // at once instead of 8. We don't bother with AVX since it would require
    // runtime dispatch and wouldn't gain us much anyways: the probability of
    // finding a match drops off drastically after the first few buckets.
    //
    // I attempted an implementation on ARM using NEON instructions, but it
    // turns out that most NEON instructions have multi-cycle latency, which in
    // the end outweighs any gains over the generic implementation.
    if #[cfg(all(
        target_feature = "sse2",
        any(target_arch = "x86", target_arch = "x86_64"),
        not(miri)
    ))] {
        #[path = "sse2.rs"]
        mod imp;
    } else {
        #[path = "generic.rs"]
        mod imp;
    }
}

mod bitmask;

use self::bitmask::BitMask;
use self::imp::Group;

// Branch prediction hint. This is currently only available on nightly but it
// consistently improves performance by 10-15%.
#[cfg(feature = "nightly")]
use core::intrinsics::{likely, unlikely};
#[cfg(not(feature = "nightly"))]
#[inline]
fn likely(b: bool) -> bool {
    b
}
#[cfg(not(feature = "nightly"))]
#[inline]
fn unlikely(b: bool) -> bool {
    b
}

#[cfg(feature = "nightly")]
#[inline]
unsafe fn offset_from<T>(to: *const T, from: *const T) -> usize {
    to.offset_from(from) as usize
}
#[cfg(not(feature = "nightly"))]
#[inline]
unsafe fn offset_from<T>(to: *const T, from: *const T) -> usize {
    (to as usize - from as usize) / mem::size_of::<T>()
}

/// Whether memory allocation errors should return an error or abort.
#[derive(Copy, Clone)]
enum Fallibility {
    Fallible,
    Infallible,
}

impl Fallibility {
    /// Error to return on capacity overflow.
    #[inline]
    fn capacity_overflow(self) -> CollectionAllocErr {
        use Fallibility::*;
        match self {
            Fallible => CollectionAllocErr::CapacityOverflow,
            Infallible => panic!("Hash table capacity overflow"),
        }
    }

    /// Error to return on allocation error.
    #[inline]
    fn alloc_err(self, layout: Layout) -> CollectionAllocErr {
        use Fallibility::*;
        match self {
            Fallible => CollectionAllocErr::AllocErr { layout },
            Infallible => handle_alloc_error(layout),
        }
    }
}

/// Control byte value for an empty bucket.
const EMPTY: u8 = 0b1111_1111;

/// Control byte value for a deleted bucket.
const DELETED: u8 = 0b1000_0000;

/// Checks whether a control byte represents a full bucket (top bit is clear).
#[inline]
fn is_full(ctrl: u8) -> bool {
    ctrl & 0x80 == 0
}

/// Checks whether a control byte represents a special value (top bit is set).
#[inline]
fn is_special(ctrl: u8) -> bool {
    ctrl & 0x80 != 0
}

/// Checks whether a special control value is EMPTY (just check 1 bit).
#[inline]
fn special_is_empty(ctrl: u8) -> bool {
    debug_assert!(is_special(ctrl));
    ctrl & 0x01 != 0
}

/// Primary hash function, used to select the initial bucket to probe from.
#[inline]
#[allow(clippy::cast_possible_truncation)]
fn h1(hash: u64) -> usize {
    // On 32-bit platforms we simply ignore the higher hash bits.
    hash as usize
}

/// Secondary hash function, saved in the low 7 bits of the control byte.
#[inline]
#[allow(clippy::cast_possible_truncation)]
fn h2(hash: u64) -> u8 {
    // Grab the top 7 bits of the hash. While the hash is normally a full 64-bit
    // value, some hash functions (such as FxHash) produce a usize result
    // instead, which means that the top 32 bits are 0 on 32-bit platforms.
    let hash_len = usize::min(mem::size_of::<usize>(), mem::size_of::<u64>());
    let top7 = hash >> (hash_len * 8 - 7);
    (top7 & 0x7f) as u8 // truncation
}

/// Probe sequence based on triangular numbers, which is guaranteed (since our
/// table size is a power of two) to visit every group of elements exactly once.
///
/// A triangular probe has us jump by 1 more group every time. So first we
/// jump by 1 group (meaning we just continue our linear scan), then 2 groups
/// (skipping over 1 group), then 3 groups (skipping over 2 groups), and so on.
///
/// Proof that the probe will visit every group in the table:
/// <https://fgiesen.wordpress.com/2015/02/22/triangular-numbers-mod-2n/>
struct ProbeSeq {
    bucket_mask: usize,
    pos: usize,
    stride: usize,
}

impl Iterator for ProbeSeq {
    type Item = usize;

    #[inline]
    fn next(&mut self) -> Option<usize> {
        // We should have found an empty bucket by now and ended the probe.
        debug_assert!(
            self.stride <= self.bucket_mask,
            "Went past end of probe sequence"
        );

        let result = self.pos;
        self.stride += Group::WIDTH;
        self.pos += self.stride;
        self.pos &= self.bucket_mask;
        Some(result)
    }
}

/// Returns the number of buckets needed to hold the given number of items,
/// taking the maximum load factor into account.
///
/// Returns `None` if an overflow occurs.
#[inline]
// Workaround for emscripten bug emscripten-core/emscripten-fastcomp#258
#[cfg_attr(target_os = "emscripten", inline(never))]
fn capacity_to_buckets(cap: usize) -> Option<usize> {
    let adjusted_cap = if cap < 8 {
        // Need at least 1 free bucket on small tables
        cap + 1
    } else {
        // Otherwise require 1/8 buckets to be empty (87.5% load)
        //
        // Be careful when modifying this, calculate_layout relies on the
        // overflow check here.
        cap.checked_mul(8)? / 7
    };

    // Any overflows will have been caught by the checked_mul. Also, any
    // rounding errors from the division above will be cleaned up by
    // next_power_of_two (which can't overflow because of the previous divison).
    Some(adjusted_cap.next_power_of_two())
}

/// Returns the maximum effective capacity for the given bucket mask, taking
/// the maximum load factor into account.
#[inline]
fn bucket_mask_to_capacity(bucket_mask: usize) -> usize {
    if bucket_mask < 8 {
        // For tables with 1/2/4/8 buckets, we always reserve one empty slot.
        // Keep in mind that the bucket mask is one less than the bucket count.
        bucket_mask
    } else {
        // For larger tables we reserve 12.5% of the slots as empty.
        ((bucket_mask + 1) / 8) * 7
    }
}

// Returns a Layout which describes the allocation required for a hash table,
// and the offset of the buckets in the allocation.
///
/// Returns `None` if an overflow occurs.
#[inline]
#[cfg(feature = "nightly")]
fn calculate_layout<T>(buckets: usize) -> Option<(Layout, usize)> {
    debug_assert!(buckets.is_power_of_two());

    // Array of buckets
    let data = Layout::array::<T>(buckets).ok()?;

    // Array of control bytes. This must be aligned to the group size.
    //
    // We add `Group::WIDTH` control bytes at the end of the array which
    // replicate the bytes at the start of the array and thus avoids the need to
    // perform bounds-checking while probing.
    //
    // There is no possible overflow here since buckets is a power of two and
    // Group::WIDTH is a small number.
    let ctrl = unsafe { Layout::from_size_align_unchecked(buckets + Group::WIDTH, Group::WIDTH) };

    ctrl.extend(data).ok()
}

// Returns a Layout which describes the allocation required for a hash table,
// and the offset of the buckets in the allocation.
#[inline]
#[cfg(not(feature = "nightly"))]
fn calculate_layout<T>(buckets: usize) -> Option<(Layout, usize)> {
    debug_assert!(buckets.is_power_of_two());

    // Manual layout calculation since Layout methods are not yet stable.
    let data_align = usize::max(mem::align_of::<T>(), Group::WIDTH);
    let data_offset = (buckets + Group::WIDTH).checked_add(data_align - 1)? & !(data_align - 1);
    let len = data_offset.checked_add(mem::size_of::<T>().checked_mul(buckets)?)?;

    Some((
        unsafe { Layout::from_size_align_unchecked(len, data_align) },
        data_offset,
    ))
}

/// A reference to a hash table bucket containing a `T`.
///
/// This is usually just a pointer to the element itself. However if the element
/// is a ZST, then we instead track the index of the element in the table so
/// that `erase` works properly.
pub struct Bucket<T> {
    // Using *const for variance
    ptr: *const T,
}

// This Send impl is needed for rayon support. This is safe since Bucket is
// never exposed in a public API.
unsafe impl<T> Send for Bucket<T> {}

impl<T> Clone for Bucket<T> {
    #[inline]
    fn clone(&self) -> Self {
        Self { ptr: self.ptr }
    }
}

impl<T> Bucket<T> {
    #[inline]
    unsafe fn from_base_index(base: *const T, index: usize) -> Self {
        let ptr = if mem::size_of::<T>() == 0 {
            index as *const T
        } else {
            base.add(index)
        };
        Self { ptr }
    }
    #[inline]
    pub unsafe fn as_ptr(&self) -> *mut T {
        if mem::size_of::<T>() == 0 {
            // Just return an arbitrary ZST pointer which is properly aligned
            mem::align_of::<T>() as *mut T
        } else {
            self.ptr as *mut T
        }
    }
    #[inline]
    unsafe fn add(&self, offset: usize) -> Self {
        let ptr = if mem::size_of::<T>() == 0 {
            (self.ptr as usize + offset) as *const T
        } else {
            self.ptr.add(offset)
        };
        Self { ptr }
    }
    #[inline]
    pub unsafe fn drop(&self) {
        self.as_ptr().drop_in_place();
    }
    #[inline]
    pub unsafe fn read(&self) -> T {
        self.as_ptr().read()
    }
    #[inline]
    pub unsafe fn write(&self, val: T) {
        self.as_ptr().write(val);
    }
    #[inline]
    pub unsafe fn as_ref<'a>(&self) -> &'a T {
        &*self.as_ptr()
    }
    #[inline]
    pub unsafe fn as_mut<'a>(&self) -> &'a mut T {
        &mut *self.as_ptr()
    }
    #[inline]
    pub unsafe fn copy_from_nonoverlapping(&self, other: &Self) {
        self.as_ptr().copy_from_nonoverlapping(other.as_ptr(), 1);
    }
}

/// A raw hash table with an unsafe API.
pub struct RawTable<T> {
    // Mask to get an index from a hash value. The value is one less than the
    // number of buckets in the table.
    bucket_mask: usize,

    // Pointer to the array of control bytes
    ctrl: NonNull<u8>,

    // Pointer to the array of buckets
    data: NonNull<T>,

    // Number of elements that can be inserted before we need to grow the table
    growth_left: usize,

    // Number of elements in the table, only really used by len()
    items: usize,

    // Tell dropck that we own instances of T.
    marker: PhantomData<T>,
}

impl<T> RawTable<T> {
    /// Creates a new empty hash table without allocating any memory.
    ///
    /// In effect this returns a table with exactly 1 bucket. However we can
    /// leave the data pointer dangling since that bucket is never written to
    /// due to our load factor forcing us to always have at least 1 free bucket.
    #[inline]
    pub fn new() -> Self {
        Self {
            data: NonNull::dangling(),
            // Be careful to cast the entire slice to a raw pointer.
            ctrl: unsafe { NonNull::new_unchecked(Group::static_empty().as_ptr() as *mut u8) },
            bucket_mask: 0,
            items: 0,
            growth_left: 0,
            marker: PhantomData,
        }
    }

    /// Allocates a new hash table with the given number of buckets.
    ///
    /// The control bytes are left uninitialized.
    #[inline]
    unsafe fn new_uninitialized(
        buckets: usize,
        fallability: Fallibility,
    ) -> Result<Self, CollectionAllocErr> {
        debug_assert!(buckets.is_power_of_two());
        let (layout, data_offset) =
            calculate_layout::<T>(buckets).ok_or_else(|| fallability.capacity_overflow())?;
        let ctrl = NonNull::new(alloc(layout)).ok_or_else(|| fallability.alloc_err(layout))?;
        let data = NonNull::new_unchecked(ctrl.as_ptr().add(data_offset) as *mut T);
        Ok(Self {
            data,
            ctrl,
            bucket_mask: buckets - 1,
            items: 0,
            growth_left: bucket_mask_to_capacity(buckets - 1),
            marker: PhantomData,
        })
    }

    /// Attempts to allocate a new hash table with at least enough capacity
    /// for inserting the given number of elements without reallocating.
    fn try_with_capacity(
        capacity: usize,
        fallability: Fallibility,
    ) -> Result<Self, CollectionAllocErr> {
        if capacity == 0 {
            Ok(Self::new())
        } else {
            unsafe {
                let buckets =
                    capacity_to_buckets(capacity).ok_or_else(|| fallability.capacity_overflow())?;
                let result = Self::new_uninitialized(buckets, fallability)?;
                result.ctrl(0).write_bytes(EMPTY, result.num_ctrl_bytes());

                Ok(result)
            }
        }
    }

    /// Allocates a new hash table with at least enough capacity for inserting
    /// the given number of elements without reallocating.
    pub fn with_capacity(capacity: usize) -> Self {
        Self::try_with_capacity(capacity, Fallibility::Infallible)
            .unwrap_or_else(|_| unsafe { hint::unreachable_unchecked() })
    }

    /// Deallocates the table without dropping any entries.
    #[inline]
    unsafe fn free_buckets(&mut self) {
        let (layout, _) =
            calculate_layout::<T>(self.buckets()).unwrap_or_else(|| hint::unreachable_unchecked());
        dealloc(self.ctrl.as_ptr(), layout);
    }

    /// Returns the index of a bucket from a `Bucket`.
    #[inline]
    unsafe fn bucket_index(&self, bucket: &Bucket<T>) -> usize {
        if mem::size_of::<T>() == 0 {
            bucket.ptr as usize
        } else {
            offset_from(bucket.ptr, self.data.as_ptr())
        }
    }

    /// Returns a pointer to a control byte.
    #[inline]
    unsafe fn ctrl(&self, index: usize) -> *mut u8 {
        debug_assert!(index < self.num_ctrl_bytes());
        self.ctrl.as_ptr().add(index)
    }

    /// Returns a pointer to an element in the table.
    #[inline]
    pub unsafe fn bucket(&self, index: usize) -> Bucket<T> {
        debug_assert_ne!(self.bucket_mask, 0);
        debug_assert!(index < self.buckets());
        Bucket::from_base_index(self.data.as_ptr(), index)
    }

    /// Erases an element from the table without dropping it.
    #[inline]
    pub unsafe fn erase_no_drop(&mut self, item: &Bucket<T>) {
        let index = self.bucket_index(item);
        debug_assert!(is_full(*self.ctrl(index)));
        let index_before = index.wrapping_sub(Group::WIDTH) & self.bucket_mask;
        let empty_before = Group::load(self.ctrl(index_before)).match_empty();
        let empty_after = Group::load(self.ctrl(index)).match_empty();

        // If we are inside a continuous block of Group::WIDTH full or deleted
        // cells then a probe window may have seen a full block when trying to
        // insert. We therefore need to keep that block non-empty so that
        // lookups will continue searching to the next probe window.
        //
        // Note that in this context `leading_zeros` refers to the bytes at the
        // end of a group, while `trailing_zeros` refers to the bytes at the
        // begining of a group.
        let ctrl = if empty_before.leading_zeros() + empty_after.trailing_zeros() >= Group::WIDTH {
            DELETED
        } else {
            self.growth_left += 1;
            EMPTY
        };
        self.set_ctrl(index, ctrl);
        self.items -= 1;
    }

    /// Returns an iterator for a probe sequence on the table.
    ///
    /// This iterator never terminates, but is guaranteed to visit each bucket
    /// group exactly once. The loop using `probe_seq` must terminate upon
    /// reaching a group containing an empty bucket.
    #[inline]
    fn probe_seq(&self, hash: u64) -> ProbeSeq {
        ProbeSeq {
            bucket_mask: self.bucket_mask,
            pos: h1(hash) & self.bucket_mask,
            stride: 0,
        }
    }

    /// Sets a control byte, and possibly also the replicated control byte at
    /// the end of the array.
    #[inline]
    unsafe fn set_ctrl(&self, index: usize, ctrl: u8) {
        // Replicate the first Group::WIDTH control bytes at the end of
        // the array without using a branch:
        // - If index >= Group::WIDTH then index == index2.
        // - Otherwise index2 == self.bucket_mask + 1 + index.
        //
        // The very last replicated control byte is never actually read because
        // we mask the initial index for unaligned loads, but we write it
        // anyways because it makes the set_ctrl implementation simpler.
        //
        // If there are fewer buckets than Group::WIDTH then this code will
        // replicate the buckets at the end of the trailing group. For example
        // with 2 buckets and a group size of 4, the control bytes will look
        // like this:
        //
        //     Real    |             Replicated
        // ---------------------------------------------
        // | [A] | [B] | [EMPTY] | [EMPTY] | [A] | [B] |
        // ---------------------------------------------
        let index2 = ((index.wrapping_sub(Group::WIDTH)) & self.bucket_mask) + Group::WIDTH;

        *self.ctrl(index) = ctrl;
        *self.ctrl(index2) = ctrl;
    }

    /// Searches for an empty or deleted bucket which is suitable for inserting
    /// a new element.
    ///
    /// There must be at least 1 empty bucket in the table.
    #[inline]
    fn find_insert_slot(&self, hash: u64) -> usize {
        for pos in self.probe_seq(hash) {
            unsafe {
                let group = Group::load(self.ctrl(pos));
                if let Some(bit) = group.match_empty_or_deleted().lowest_set_bit() {
                    let result = (pos + bit) & self.bucket_mask;

                    // In tables smaller than the group width, trailing control
                    // bytes outside the range of the table are filled with
                    // EMPTY entries. These will unfortunately trigger a
                    // match, but once masked may point to a full bucket that
                    // is already occupied. We detect this situation here and
                    // perform a second scan starting at the begining of the
                    // table. This second scan is guaranteed to find an empty
                    // slot (due to the load factor) before hitting the trailing
                    // control bytes (containing EMPTY).
                    if unlikely(is_full(*self.ctrl(result))) {
                        debug_assert!(self.bucket_mask < Group::WIDTH);
                        debug_assert_ne!(pos, 0);
                        return Group::load_aligned(self.ctrl(0))
                            .match_empty_or_deleted()
                            .lowest_set_bit_nonzero();
                    } else {
                        return result;
                    }
                }
            }
        }

        // probe_seq never returns.
        unreachable!();
    }

    /// Marks all table buckets as empty without dropping their contents.
    #[inline]
    pub fn clear_no_drop(&mut self) {
        if !self.is_empty_singleton() {
            unsafe {
                self.ctrl(0).write_bytes(EMPTY, self.num_ctrl_bytes());
            }
        }
        self.items = 0;
        self.growth_left = bucket_mask_to_capacity(self.bucket_mask);
    }

    /// Removes all elements from the table without freeing the backing memory.
    #[inline]
    pub fn clear(&mut self) {
        // Ensure that the table is reset even if one of the drops panic
        let self_ = guard(self, |self_| self_.clear_no_drop());

        if mem::needs_drop::<T>() {
            unsafe {
                for item in self_.iter() {
                    item.drop();
                }
            }
        }
    }

    /// Shrinks the table to fit `max(self.len(), min_size)` elements.
    #[inline]
    pub fn shrink_to(&mut self, min_size: usize, hasher: impl Fn(&T) -> u64) {
        // Calculate the minimal number of elements that we need to reserve
        // space for.
        let min_size = usize::max(self.items, min_size);
        if min_size == 0 {
            *self = Self::new();
            return;
        }

        // Calculate the number of buckets that we need for this number of
        // elements. If the calculation overflows then the requested bucket
        // count must be larger than what we have right and nothing needs to be
        // done.
        let min_buckets = match capacity_to_buckets(min_size) {
            Some(buckets) => buckets,
            None => return,
        };

        // If we have more buckets than we need, shrink the table.
        if min_buckets < self.buckets() {
            // Fast path if the table is empty
            if self.items == 0 {
                *self = Self::with_capacity(min_size)
            } else {
                self.resize(min_size, hasher, Fallibility::Infallible)
                    .unwrap_or_else(|_| unsafe { hint::unreachable_unchecked() });
            }
        }
    }

    /// Ensures that at least `additional` items can be inserted into the table
    /// without reallocation.
    #[inline]
    pub fn reserve(&mut self, additional: usize, hasher: impl Fn(&T) -> u64) {
        if additional > self.growth_left {
            self.reserve_rehash(additional, hasher, Fallibility::Infallible)
                .unwrap_or_else(|_| unsafe { hint::unreachable_unchecked() });
        }
    }

    /// Tries to ensure that at least `additional` items can be inserted into
    /// the table without reallocation.
    #[inline]
    pub fn try_reserve(
        &mut self,
        additional: usize,
        hasher: impl Fn(&T) -> u64,
    ) -> Result<(), CollectionAllocErr> {
        if additional > self.growth_left {
            self.reserve_rehash(additional, hasher, Fallibility::Fallible)
        } else {
            Ok(())
        }
    }

    /// Out-of-line slow path for `reserve` and `try_reserve`.
    #[cold]
    #[inline(never)]
    fn reserve_rehash(
        &mut self,
        additional: usize,
        hasher: impl Fn(&T) -> u64,
        fallability: Fallibility,
    ) -> Result<(), CollectionAllocErr> {
        let new_items = self
            .items
            .checked_add(additional)
            .ok_or_else(|| fallability.capacity_overflow())?;

        let full_capacity = bucket_mask_to_capacity(self.bucket_mask);
        if new_items <= full_capacity / 2 {
            // Rehash in-place without re-allocating if we have plenty of spare
            // capacity that is locked up due to DELETED entries.
            self.rehash_in_place(hasher);
            Ok(())
        } else {
            // Otherwise, conservatively resize to at least the next size up
            // to avoid churning deletes into frequent rehashes.
            self.resize(
                usize::max(new_items, full_capacity + 1),
                hasher,
                fallability,
            )
        }
    }

    /// Rehashes the contents of the table in place (i.e. without changing the
    /// allocation).
    ///
    /// If `hasher` panics then some the table's contents may be lost.
    fn rehash_in_place(&mut self, hasher: impl Fn(&T) -> u64) {
        unsafe {
            // Bulk convert all full control bytes to DELETED, and all DELETED
            // control bytes to EMPTY. This effectively frees up all buckets
            // containing a DELETED entry.
            for i in (0..self.buckets()).step_by(Group::WIDTH) {
                let group = Group::load_aligned(self.ctrl(i));
                let group = group.convert_special_to_empty_and_full_to_deleted();
                group.store_aligned(self.ctrl(i));
            }

            // Fix up the trailing control bytes. See the comments in set_ctrl
            // for the handling of tables smaller than the group width.
            if self.buckets() < Group::WIDTH {
                self.ctrl(0)
                    .copy_to(self.ctrl(Group::WIDTH), self.buckets());
            } else {
                self.ctrl(0)
                    .copy_to(self.ctrl(self.buckets()), Group::WIDTH);
            }

            // If the hash function panics then properly clean up any elements
            // that we haven't rehashed yet. We unfortunately can't preserve the
            // element since we lost their hash and have no way of recovering it
            // without risking another panic.
            let mut guard = guard(self, |self_| {
                if mem::needs_drop::<T>() {
                    for i in 0..self_.buckets() {
                        if *self_.ctrl(i) == DELETED {
                            self_.set_ctrl(i, EMPTY);
                            self_.bucket(i).drop();
                            self_.items -= 1;
                        }
                    }
                }
                self_.growth_left = bucket_mask_to_capacity(self_.bucket_mask) - self_.items;
            });

            // At this point, DELETED elements are elements that we haven't
            // rehashed yet. Find them and re-insert them at their ideal
            // position.
            'outer: for i in 0..guard.buckets() {
                if *guard.ctrl(i) != DELETED {
                    continue;
                }
                'inner: loop {
                    // Hash the current item
                    let item = guard.bucket(i);
                    let hash = hasher(item.as_ref());

                    // Search for a suitable place to put it
                    let new_i = guard.find_insert_slot(hash);

                    // Probing works by scanning through all of the control
                    // bytes in groups, which may not be aligned to the group
                    // size. If both the new and old position fall within the
                    // same unaligned group, then there is no benefit in moving
                    // it and we can just continue to the next item.
                    let probe_index = |pos: usize| {
                        (pos.wrapping_sub(guard.probe_seq(hash).pos) & guard.bucket_mask)
                            / Group::WIDTH
                    };
                    if likely(probe_index(i) == probe_index(new_i)) {
                        guard.set_ctrl(i, h2(hash));
                        continue 'outer;
                    }

                    // We are moving the current item to a new position. Write
                    // our H2 to the control byte of the new position.
                    let prev_ctrl = *guard.ctrl(new_i);
                    guard.set_ctrl(new_i, h2(hash));

                    if prev_ctrl == EMPTY {
                        // If the target slot is empty, simply move the current
                        // element into the new slot and clear the old control
                        // byte.
                        guard.set_ctrl(i, EMPTY);
                        guard.bucket(new_i).copy_from_nonoverlapping(&item);
                        continue 'outer;
                    } else {
                        // If the target slot is occupied, swap the two elements
                        // and then continue processing the element that we just
                        // swapped into the old slot.
                        debug_assert_eq!(prev_ctrl, DELETED);
                        mem::swap(guard.bucket(new_i).as_mut(), item.as_mut());
                        continue 'inner;
                    }
                }
            }

            guard.growth_left = bucket_mask_to_capacity(guard.bucket_mask) - guard.items;
            mem::forget(guard);
        }
    }

    /// Allocates a new table of a different size and moves the contents of the
    /// current table into it.
    fn resize(
        &mut self,
        capacity: usize,
        hasher: impl Fn(&T) -> u64,
        fallability: Fallibility,
    ) -> Result<(), CollectionAllocErr> {
        unsafe {
            debug_assert!(self.items <= capacity);

            // Allocate and initialize the new table.
            let mut new_table = Self::try_with_capacity(capacity, fallability)?;
            new_table.growth_left -= self.items;
            new_table.items = self.items;

            // The hash function may panic, in which case we simply free the new
            // table without dropping any elements that may have been copied into
            // it.
            //
            // This guard is also used to free the old table on success, see
            // the comment at the bottom of this function.
            let mut new_table = guard(ManuallyDrop::new(new_table), |new_table| {
                if !new_table.is_empty_singleton() {
                    new_table.free_buckets();
                }
            });

            // Copy all elements to the new table.
            for item in self.iter() {
                // This may panic.
                let hash = hasher(item.as_ref());

                // We can use a simpler version of insert() here since:
                // - there are no DELETED entries.
                // - we know there is enough space in the table.
                // - all elements are unique.
                let index = new_table.find_insert_slot(hash);
                new_table.set_ctrl(index, h2(hash));
                new_table.bucket(index).copy_from_nonoverlapping(&item);
            }

            // We successfully copied all elements without panicking. Now replace
            // self with the new table. The old table will have its memory freed but
            // the items will not be dropped (since they have been moved into the
            // new table).
            mem::swap(self, &mut new_table);

            Ok(())
        }
    }

    /// Inserts a new element into the table.
    ///
    /// This does not check if the given element already exists in the table.
    #[inline]
    pub fn insert(&mut self, hash: u64, value: T, hasher: impl Fn(&T) -> u64) -> Bucket<T> {
        unsafe {
            let mut index = self.find_insert_slot(hash);

            // We can avoid growing the table once we have reached our load
            // factor if we are replacing a tombstone. This works since the
            // number of EMPTY slots does not change in this case.
            let old_ctrl = *self.ctrl(index);
            if unlikely(self.growth_left == 0 && special_is_empty(old_ctrl)) {
                self.reserve(1, hasher);
                index = self.find_insert_slot(hash);
            }

            let bucket = self.bucket(index);
            self.growth_left -= special_is_empty(old_ctrl) as usize;
            self.set_ctrl(index, h2(hash));
            bucket.write(value);
            self.items += 1;
            bucket
        }
    }

    /// Inserts a new element into the table, without growing the table.
    ///
    /// There must be enough space in the table to insert the new element.
    ///
    /// This does not check if the given element already exists in the table.
    #[inline]
    #[cfg(feature = "rustc-internal-api")]
    pub fn insert_no_grow(&mut self, hash: u64, value: T) -> Bucket<T> {
        unsafe {
            let index = self.find_insert_slot(hash);
            let bucket = self.bucket(index);

            // If we are replacing a DELETED entry then we don't need to update
            // the load counter.
            let old_ctrl = *self.ctrl(index);
            self.growth_left -= special_is_empty(old_ctrl) as usize;

            self.set_ctrl(index, h2(hash));
            bucket.write(value);
            self.items += 1;
            bucket
        }
    }

    /// Searches for an element in the table.
    #[inline]
    pub fn find(&self, hash: u64, mut eq: impl FnMut(&T) -> bool) -> Option<Bucket<T>> {
        unsafe {
            for pos in self.probe_seq(hash) {
                let group = Group::load(self.ctrl(pos));
                for bit in group.match_byte(h2(hash)) {
                    let index = (pos + bit) & self.bucket_mask;
                    let bucket = self.bucket(index);
                    if likely(eq(bucket.as_ref())) {
                        return Some(bucket);
                    }
                }
                if likely(group.match_empty().any_bit_set()) {
                    return None;
                }
            }
        }

        // probe_seq never returns.
        unreachable!();
    }

    /// Returns the number of elements the map can hold without reallocating.
    ///
    /// This number is a lower bound; the table might be able to hold
    /// more, but is guaranteed to be able to hold at least this many.
    #[inline]
    pub fn capacity(&self) -> usize {
        self.items + self.growth_left
    }

    /// Returns the number of elements in the table.
    #[inline]
    pub fn len(&self) -> usize {
        self.items
    }

    /// Returns the number of buckets in the table.
    #[inline]
    pub fn buckets(&self) -> usize {
        self.bucket_mask + 1
    }

    /// Returns the number of control bytes in the table.
    #[inline]
    fn num_ctrl_bytes(&self) -> usize {
        self.bucket_mask + 1 + Group::WIDTH
    }

    /// Returns whether this table points to the empty singleton with a capacity
    /// of 0.
    #[inline]
    fn is_empty_singleton(&self) -> bool {
        self.bucket_mask == 0
    }

    /// Returns an iterator over every element in the table. It is up to
    /// the caller to ensure that the `RawTable` outlives the `RawIter`.
    /// Because we cannot make the `next` method unsafe on the `RawIter`
    /// struct, we have to make the `iter` method unsafe.
    #[inline]
    pub unsafe fn iter(&self) -> RawIter<T> {
        let data = Bucket::from_base_index(self.data.as_ptr(), 0);
        RawIter {
            iter: RawIterRange::new(self.ctrl.as_ptr(), data, self.buckets()),
            items: self.items,
        }
    }

    /// Returns an iterator which removes all elements from the table without
    /// freeing the memory. It is up to the caller to ensure that the `RawTable`
    /// outlives the `RawDrain`. Because we cannot make the `next` method unsafe
    /// on the `RawDrain`, we have to make the `drain` method unsafe.
    #[inline]
    pub unsafe fn drain(&mut self) -> RawDrain<'_, T> {
        RawDrain {
            iter: self.iter(),
            table: ManuallyDrop::new(mem::replace(self, Self::new())),
            orig_table: NonNull::from(self),
            marker: PhantomData,
        }
    }

    /// Converts the table into a raw allocation. The contents of the table
    /// should be dropped using a `RawIter` before freeing the allocation.
    #[inline]
    pub(crate) fn into_alloc(self) -> Option<(NonNull<u8>, Layout)> {
        let alloc = if self.is_empty_singleton() {
            None
        } else {
            let (layout, _) = calculate_layout::<T>(self.buckets())
                .unwrap_or_else(|| unsafe { hint::unreachable_unchecked() });
            Some((self.ctrl.cast(), layout))
        };
        mem::forget(self);
        alloc
    }
}

unsafe impl<T> Send for RawTable<T> where T: Send {}
unsafe impl<T> Sync for RawTable<T> where T: Sync {}

impl<T: Clone> Clone for RawTable<T> {
    fn clone(&self) -> Self {
        if self.is_empty_singleton() {
            Self::new()
        } else {
            unsafe {
                let mut new_table = ManuallyDrop::new(
                    Self::new_uninitialized(self.buckets(), Fallibility::Infallible)
                        .unwrap_or_else(|_| hint::unreachable_unchecked()),
                );

                // Copy the control bytes unchanged. We do this in a single pass
                self.ctrl(0)
                    .copy_to_nonoverlapping(new_table.ctrl(0), self.num_ctrl_bytes());

                {
                    // The cloning of elements may panic, in which case we need
                    // to make sure we drop only the elements that have been
                    // cloned so far.
                    let mut guard = guard((0, &mut new_table), |(index, new_table)| {
                        if mem::needs_drop::<T>() {
                            for i in 0..=*index {
                                if is_full(*new_table.ctrl(i)) {
                                    new_table.bucket(i).drop();
                                }
                            }
                        }
                        new_table.free_buckets();
                    });

                    for from in self.iter() {
                        let index = self.bucket_index(&from);
                        let to = guard.1.bucket(index);
                        to.write(from.as_ref().clone());

                        // Update the index in case we need to unwind.
                        guard.0 = index;
                    }

                    // Successfully cloned all items, no need to clean up.
                    mem::forget(guard);
                }

                // Return the newly created table.
                new_table.items = self.items;
                new_table.growth_left = self.growth_left;
                ManuallyDrop::into_inner(new_table)
            }
        }
    }
}

#[cfg(feature = "nightly")]
unsafe impl<#[may_dangle] T> Drop for RawTable<T> {
    #[inline]
    fn drop(&mut self) {
        if !self.is_empty_singleton() {
            unsafe {
                if mem::needs_drop::<T>() {
                    for item in self.iter() {
                        item.drop();
                    }
                }
                self.free_buckets();
            }
        }
    }
}
#[cfg(not(feature = "nightly"))]
impl<T> Drop for RawTable<T> {
    #[inline]
    fn drop(&mut self) {
        if !self.is_empty_singleton() {
            unsafe {
                if mem::needs_drop::<T>() {
                    for item in self.iter() {
                        item.drop();
                    }
                }
                self.free_buckets();
            }
        }
    }
}

impl<T> IntoIterator for RawTable<T> {
    type Item = T;
    type IntoIter = RawIntoIter<T>;

    #[inline]
    fn into_iter(self) -> RawIntoIter<T> {
        unsafe {
            let iter = self.iter();
            let alloc = self.into_alloc();
            RawIntoIter {
                iter,
                alloc,
                marker: PhantomData,
            }
        }
    }
}

/// Iterator over a sub-range of a table. Unlike `RawIter` this iterator does
/// not track an item count.
pub(crate) struct RawIterRange<T> {
    // Mask of full buckets in the current group. Bits are cleared from this
    // mask as each element is processed.
    current_group: BitMask,

    // Pointer to the buckets for the current group.
    data: Bucket<T>,

    // Pointer to the next group of control bytes,
    // Must be aligned to the group size.
    next_ctrl: *const u8,

    // Pointer one past the last control byte of this range.
    end: *const u8,
}

impl<T> RawIterRange<T> {
    /// Returns a `RawIterRange` covering a subset of a table.
    ///
    /// The control byte address must be aligned to the group size.
    #[inline]
    unsafe fn new(ctrl: *const u8, data: Bucket<T>, len: usize) -> Self {
        debug_assert_ne!(len, 0);
        debug_assert_eq!(ctrl as usize % Group::WIDTH, 0);
        let end = ctrl.add(len);

        // Load the first group and advance ctrl to point to the next group
        let current_group = Group::load_aligned(ctrl).match_full();
        let next_ctrl = ctrl.add(Group::WIDTH);

        Self {
            current_group,
            data,
            next_ctrl,
            end,
        }
    }

    /// Splits a `RawIterRange` into two halves.
    ///
    /// Returns `None` if the remaining range is smaller than or equal to the
    /// group width.
    #[inline]
    #[cfg(feature = "rayon")]
    pub(crate) fn split(mut self) -> (Self, Option<RawIterRange<T>>) {
        unsafe {
            if self.end <= self.next_ctrl {
                // Nothing to split if the group that we are current processing
                // is the last one.
                (self, None)
            } else {
                // len is the remaining number of elements after the group that
                // we are currently processing. It must be a multiple of the
                // group size (small tables are caught by the check above).
                let len = offset_from(self.end, self.next_ctrl);
                debug_assert_eq!(len % Group::WIDTH, 0);

                // Split the remaining elements into two halves, but round the
                // midpoint down in case there is an odd number of groups
                // remaining. This ensures that:
                // - The tail is at least 1 group long.
                // - The split is roughly even considering we still have the
                //   current group to process.
                let mid = (len / 2) & !(Group::WIDTH - 1);

                let tail = Self::new(
                    self.next_ctrl.add(mid),
                    self.data.add(Group::WIDTH).add(mid),
                    len - mid,
                );
                debug_assert_eq!(self.data.add(Group::WIDTH).add(mid).ptr, tail.data.ptr);
                debug_assert_eq!(self.end, tail.end);
                self.end = self.next_ctrl.add(mid);
                debug_assert_eq!(self.end.add(Group::WIDTH), tail.next_ctrl);
                (self, Some(tail))
            }
        }
    }
}

// We make raw iterators unconditionally Send and Sync, and let the PhantomData
// in the actual iterator implementations determine the real Send/Sync bounds.
unsafe impl<T> Send for RawIterRange<T> {}
unsafe impl<T> Sync for RawIterRange<T> {}

impl<T> Clone for RawIterRange<T> {
    #[inline]
    fn clone(&self) -> Self {
        Self {
            data: self.data.clone(),
            next_ctrl: self.next_ctrl,
            current_group: self.current_group,
            end: self.end,
        }
    }
}

impl<T> Iterator for RawIterRange<T> {
    type Item = Bucket<T>;

    #[inline]
    fn next(&mut self) -> Option<Bucket<T>> {
        unsafe {
            loop {
                if let Some(index) = self.current_group.lowest_set_bit() {
                    self.current_group = self.current_group.remove_lowest_bit();
                    return Some(self.data.add(index));
                }

                if self.next_ctrl >= self.end {
                    return None;
                }

                // We might read past self.end up to the next group boundary,
                // but this is fine because it only occurs on tables smaller
                // than the group size where the trailing control bytes are all
                // EMPTY. On larger tables self.end is guaranteed to be aligned
                // to the group size (since tables are power-of-two sized).
                self.current_group = Group::load_aligned(self.next_ctrl).match_full();
                self.data = self.data.add(Group::WIDTH);
                self.next_ctrl = self.next_ctrl.add(Group::WIDTH);
            }
        }
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        // We don't have an item count, so just guess based on the range size.
        (
            0,
            Some(unsafe { offset_from(self.end, self.next_ctrl) + Group::WIDTH }),
        )
    }
}

impl<T> FusedIterator for RawIterRange<T> {}

/// Iterator which returns a raw pointer to every full bucket in the table.
pub struct RawIter<T> {
    pub(crate) iter: RawIterRange<T>,
    items: usize,
}

impl<T> Clone for RawIter<T> {
    #[inline]
    fn clone(&self) -> Self {
        Self {
            iter: self.iter.clone(),
            items: self.items,
        }
    }
}

impl<T> Iterator for RawIter<T> {
    type Item = Bucket<T>;

    #[inline]
    fn next(&mut self) -> Option<Bucket<T>> {
        if let Some(b) = self.iter.next() {
            self.items -= 1;
            Some(b)
        } else {
            // We don't check against items == 0 here to allow the
            // compiler to optimize away the item count entirely if the
            // iterator length is never queried.
            debug_assert_eq!(self.items, 0);
            None
        }
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        (self.items, Some(self.items))
    }
}

impl<T> ExactSizeIterator for RawIter<T> {}
impl<T> FusedIterator for RawIter<T> {}

/// Iterator which consumes a table and returns elements.
pub struct RawIntoIter<T> {
    iter: RawIter<T>,
    alloc: Option<(NonNull<u8>, Layout)>,
    marker: PhantomData<T>,
}

impl<T> RawIntoIter<T> {
    #[inline]
    pub fn iter(&self) -> RawIter<T> {
        self.iter.clone()
    }
}

unsafe impl<T> Send for RawIntoIter<T> where T: Send {}
unsafe impl<T> Sync for RawIntoIter<T> where T: Sync {}

#[cfg(feature = "nightly")]
unsafe impl<#[may_dangle] T> Drop for RawIntoIter<T> {
    #[inline]
    fn drop(&mut self) {
        unsafe {
            // Drop all remaining elements
            if mem::needs_drop::<T>() {
                while let Some(item) = self.iter.next() {
                    item.drop();
                }
            }

            // Free the table
            if let Some((ptr, layout)) = self.alloc {
                dealloc(ptr.as_ptr(), layout);
            }
        }
    }
}
#[cfg(not(feature = "nightly"))]
impl<T> Drop for RawIntoIter<T> {
    #[inline]
    fn drop(&mut self) {
        unsafe {
            // Drop all remaining elements
            if mem::needs_drop::<T>() {
                while let Some(item) = self.iter.next() {
                    item.drop();
                }
            }

            // Free the table
            if let Some((ptr, layout)) = self.alloc {
                dealloc(ptr.as_ptr(), layout);
            }
        }
    }
}

impl<T> Iterator for RawIntoIter<T> {
    type Item = T;

    #[inline]
    fn next(&mut self) -> Option<T> {
        unsafe { Some(self.iter.next()?.read()) }
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        self.iter.size_hint()
    }
}

impl<T> ExactSizeIterator for RawIntoIter<T> {}
impl<T> FusedIterator for RawIntoIter<T> {}

/// Iterator which consumes elements without freeing the table storage.
pub struct RawDrain<'a, T> {
    iter: RawIter<T>,

    // The table is moved into the iterator for the duration of the drain. This
    // ensures that an empty table is left if the drain iterator is leaked
    // without dropping.
    table: ManuallyDrop<RawTable<T>>,
    orig_table: NonNull<RawTable<T>>,

    // We don't use a &'a mut RawTable<T> because we want RawDrain to be
    // covariant over T.
    marker: PhantomData<&'a RawTable<T>>,
}

impl<T> RawDrain<'_, T> {
    #[inline]
    pub fn iter(&self) -> RawIter<T> {
        self.iter.clone()
    }
}

unsafe impl<T> Send for RawDrain<'_, T> where T: Send {}
unsafe impl<T> Sync for RawDrain<'_, T> where T: Sync {}

impl<T> Drop for RawDrain<'_, T> {
    #[inline]
    fn drop(&mut self) {
        unsafe {
            // Drop all remaining elements. Note that this may panic.
            if mem::needs_drop::<T>() {
                while let Some(item) = self.iter.next() {
                    item.drop();
                }
            }

            // Reset the contents of the table now that all elements have been
            // dropped.
            self.table.clear_no_drop();

            // Move the now empty table back to its original location.
            self.orig_table
                .as_ptr()
                .copy_from_nonoverlapping(&*self.table, 1);
        }
    }
}

impl<T> Iterator for RawDrain<'_, T> {
    type Item = T;

    #[inline]
    fn next(&mut self) -> Option<T> {
        unsafe {
            let item = self.iter.next()?;
            Some(item.read())
        }
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        self.iter.size_hint()
    }
}

impl<T> ExactSizeIterator for RawDrain<'_, T> {}
impl<T> FusedIterator for RawDrain<'_, T> {}