1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
use std::fmt::Debug;
use std::marker::PhantomData;
use crate::lockable::{Lockable, OwnedLockable, RawLock, Sharable};
use crate::Keyable;
use super::{utils, LockGuard, RefLockCollection};
#[must_use]
pub fn get_locks<L: Lockable>(data: &L) -> Vec<&dyn RawLock> {
let mut locks = Vec::new();
data.get_ptrs(&mut locks);
locks.sort_by_key(|lock| std::ptr::from_ref(*lock));
locks
}
/// returns `true` if the sorted list contains a duplicate
#[must_use]
fn contains_duplicates(l: &[&dyn RawLock]) -> bool {
l.windows(2)
.any(|window| std::ptr::eq(window[0], window[1]))
}
impl<'a, L> AsRef<L> for RefLockCollection<'a, L> {
fn as_ref(&self) -> &L {
self.data
}
}
impl<'a, L> IntoIterator for &'a RefLockCollection<'a, L>
where
&'a L: IntoIterator,
{
type Item = <&'a L as IntoIterator>::Item;
type IntoIter = <&'a L as IntoIterator>::IntoIter;
fn into_iter(self) -> Self::IntoIter {
self.data.into_iter()
}
}
unsafe impl<'c, L: Lockable> Lockable for RefLockCollection<'c, L> {
type Guard<'g> = L::Guard<'g> where Self: 'g;
type ReadGuard<'g> = L::ReadGuard<'g> where Self: 'g;
fn get_ptrs<'a>(&'a self, ptrs: &mut Vec<&'a dyn RawLock>) {
ptrs.extend_from_slice(&self.locks);
}
unsafe fn guard(&self) -> Self::Guard<'_> {
self.data.guard()
}
unsafe fn read_guard(&self) -> Self::ReadGuard<'_> {
self.data.read_guard()
}
}
unsafe impl<'c, L: Sharable> Sharable for RefLockCollection<'c, L> {}
impl<'a, L: Debug> Debug for RefLockCollection<'a, L> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct(stringify!(RefLockCollection))
.field("data", self.data)
.finish_non_exhaustive()
}
}
impl<'a, L: OwnedLockable + Default> From<&'a L> for RefLockCollection<'a, L> {
fn from(value: &'a L) -> Self {
Self::new(value)
}
}
impl<'a, L: OwnedLockable> RefLockCollection<'a, L> {
/// Creates a new collection of owned locks.
///
/// Because the locks are owned, there's no need to do any checks for
/// duplicate values.
///
/// # Examples
///
/// ```
/// use happylock::Mutex;
/// use happylock::collection::RefLockCollection;
///
/// let data = (Mutex::new(0), Mutex::new(""));
/// let lock = RefLockCollection::new(&data);
/// ```
#[must_use]
pub fn new(data: &'a L) -> RefLockCollection<L> {
RefLockCollection {
locks: get_locks(data),
data,
}
}
}
impl<'a, L: Lockable> RefLockCollection<'a, L> {
/// Creates a new collections of locks.
///
/// # Safety
///
/// This results in undefined behavior if any locks are presented twice
/// within this collection.
///
/// # Examples
///
/// ```
/// use happylock::Mutex;
/// use happylock::collection::RefLockCollection;
///
/// let data1 = Mutex::new(0);
/// let data2 = Mutex::new("");
///
/// // safety: data1 and data2 refer to distinct mutexes
/// let data = (&data1, &data2);
/// let lock = unsafe { RefLockCollection::new_unchecked(&data) };
/// ```
#[must_use]
pub unsafe fn new_unchecked(data: &'a L) -> Self {
Self {
data,
locks: get_locks(data),
}
}
/// Creates a new collection of locks.
///
/// This returns `None` if any locks are found twice in the given
/// collection.
///
/// # Examples
///
/// ```
/// use happylock::Mutex;
/// use happylock::collection::RefLockCollection;
///
/// let data1 = Mutex::new(0);
/// let data2 = Mutex::new("");
///
/// // data1 and data2 refer to distinct mutexes, so this won't panic
/// let data = (&data1, &data2);
/// let lock = RefLockCollection::try_new(&data).unwrap();
/// ```
#[must_use]
pub fn try_new(data: &'a L) -> Option<Self> {
let locks = get_locks(data);
if contains_duplicates(&locks) {
return None;
}
Some(Self { data, locks })
}
/// Locks the collection
///
/// This function returns a guard that can be used to access the underlying
/// data. When the guard is dropped, the locks in the collection are also
/// dropped.
///
/// # Examples
///
/// ```
/// use happylock::{Mutex, ThreadKey};
/// use happylock::collection::RefLockCollection;
///
/// let key = ThreadKey::get().unwrap();
/// let data = (Mutex::new(0), Mutex::new(""));
/// let lock = RefLockCollection::new(&data);
///
/// let mut guard = lock.lock(key);
/// *guard.0 += 1;
/// *guard.1 = "1";
/// ```
pub fn lock<'key: 'a, Key: Keyable + 'key>(
&'a self,
key: Key,
) -> LockGuard<'key, L::Guard<'a>, Key> {
for lock in &self.locks {
// safety: we have the thread key
unsafe { lock.lock() };
}
LockGuard {
// safety: we've already acquired the lock
guard: unsafe { self.data.guard() },
key,
_phantom: PhantomData,
}
}
/// Attempts to lock the without blocking.
///
/// If successful, this method returns a guard that can be used to access
/// the data, and unlocks the data when it is dropped. Otherwise, `None` is
/// returned.
///
/// # Examples
///
/// ```
/// use happylock::{Mutex, ThreadKey};
/// use happylock::collection::RefLockCollection;
///
/// let key = ThreadKey::get().unwrap();
/// let data = (Mutex::new(0), Mutex::new(""));
/// let lock = RefLockCollection::new(&data);
///
/// match lock.try_lock(key) {
/// Some(mut guard) => {
/// *guard.0 += 1;
/// *guard.1 = "1";
/// },
/// None => unreachable!(),
/// };
///
/// ```
pub fn try_lock<'key: 'a, Key: Keyable + 'key>(
&'a self,
key: Key,
) -> Option<LockGuard<'key, L::Guard<'a>, Key>> {
let guard = unsafe {
if !utils::ordered_try_lock(&self.locks) {
return None;
}
// safety: we've acquired the locks
self.data.guard()
};
Some(LockGuard {
guard,
key,
_phantom: PhantomData,
})
}
/// Unlocks the underlying lockable data type, returning the key that's
/// associated with it.
///
/// # Examples
///
/// ```
/// use happylock::{Mutex, ThreadKey};
/// use happylock::collection::RefLockCollection;
///
/// let key = ThreadKey::get().unwrap();
/// let data = (Mutex::new(0), Mutex::new(""));
/// let lock = RefLockCollection::new(&data);
///
/// let mut guard = lock.lock(key);
/// *guard.0 += 1;
/// *guard.1 = "1";
/// let key = RefLockCollection::<(Mutex<i32>, Mutex<&str>)>::unlock(guard);
/// ```
#[allow(clippy::missing_const_for_fn)]
pub fn unlock<'key: 'a, Key: Keyable + 'key>(guard: LockGuard<'key, L::Guard<'a>, Key>) -> Key {
drop(guard.guard);
guard.key
}
}
impl<'a, L: Sharable> RefLockCollection<'a, L> {
/// Locks the collection, so that other threads can still read from it
///
/// This function returns a guard that can be used to access the underlying
/// data immutably. When the guard is dropped, the locks in the collection
/// are also dropped.
///
/// # Examples
///
/// ```
/// use happylock::{RwLock, ThreadKey};
/// use happylock::collection::RefLockCollection;
///
/// let key = ThreadKey::get().unwrap();
/// let data = (RwLock::new(0), RwLock::new(""));
/// let lock = RefLockCollection::new(&data);
///
/// let mut guard = lock.read(key);
/// assert_eq!(*guard.0, 0);
/// assert_eq!(*guard.1, "");
/// ```
pub fn read<'key: 'a, Key: Keyable + 'key>(
&'a self,
key: Key,
) -> LockGuard<'key, L::ReadGuard<'a>, Key> {
for lock in &self.locks {
// safety: we have the thread key
unsafe { lock.read() };
}
LockGuard {
// safety: we've already acquired the lock
guard: unsafe { self.data.read_guard() },
key,
_phantom: PhantomData,
}
}
/// Attempts to lock the without blocking, in such a way that other threads
/// can still read from the collection.
///
/// If successful, this method returns a guard that can be used to access
/// the data immutably, and unlocks the data when it is dropped. Otherwise,
/// `None` is returned.
///
/// # Examples
///
/// ```
/// use happylock::{RwLock, ThreadKey};
/// use happylock::collection::RefLockCollection;
///
/// let key = ThreadKey::get().unwrap();
/// let data = (RwLock::new(5), RwLock::new("6"));
/// let lock = RefLockCollection::new(&data);
///
/// match lock.try_read(key) {
/// Some(mut guard) => {
/// assert_eq!(*guard.0, 5);
/// assert_eq!(*guard.1, "6");
/// },
/// None => unreachable!(),
/// };
///
/// ```
pub fn try_read<'key: 'a, Key: Keyable + 'key>(
&'a self,
key: Key,
) -> Option<LockGuard<'key, L::ReadGuard<'a>, Key>> {
let guard = unsafe {
if !utils::ordered_try_read(&self.locks) {
return None;
}
// safety: we've acquired the locks
self.data.read_guard()
};
Some(LockGuard {
guard,
key,
_phantom: PhantomData,
})
}
/// Unlocks the underlying lockable data type, returning the key that's
/// associated with it.
///
/// # Examples
///
/// ```
/// use happylock::{RwLock, ThreadKey};
/// use happylock::collection::RefLockCollection;
///
/// let key = ThreadKey::get().unwrap();
/// let data = (RwLock::new(0), RwLock::new(""));
/// let lock = RefLockCollection::new(&data);
///
/// let mut guard = lock.read(key);
/// let key = RefLockCollection::<(RwLock<i32>, RwLock<&str>)>::unlock_read(guard);
/// ```
#[allow(clippy::missing_const_for_fn)]
pub fn unlock_read<'key: 'a, Key: Keyable + 'key>(
guard: LockGuard<'key, L::ReadGuard<'a>, Key>,
) -> Key {
drop(guard.guard);
guard.key
}
}
impl<'a, L: 'a> RefLockCollection<'a, L>
where
&'a L: IntoIterator,
{
/// Returns an iterator over references to each value in the collection.
///
/// # Examples
///
/// ```
/// use happylock::{Mutex, ThreadKey};
/// use happylock::collection::RefLockCollection;
///
/// let key = ThreadKey::get().unwrap();
/// let data = [Mutex::new(26), Mutex::new(1)];
/// let lock = RefLockCollection::new(&data);
///
/// let mut iter = lock.iter();
/// let mutex = iter.next().unwrap();
/// let guard = mutex.lock(key);
///
/// assert_eq!(*guard, 26);
/// ```
#[must_use]
pub fn iter(&'a self) -> <&'a L as IntoIterator>::IntoIter {
self.into_iter()
}
}