handshake 0.1.2

kimpale handshake
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
use blake2::{
	digest::{generic_array::GenericArray, OutputSizeUser},
	Blake2s256, Digest,
};
use chacha20poly1305::{AeadInPlace, ChaCha20Poly1305, Key, KeyInit, Nonce};
use rand_core::{CryptoRng, RngCore};
use x25519_dalek::{PublicKey, StaticSecret};

pub mod transport;
pub use transport::Transport;

pub const NOISE: &str = "Noise_IK_25519_ChaChaPoly_BLAKE2s";

#[derive(Clone)]
pub struct Hash {
	pub data: GenericArray<u8, <Blake2s256 as OutputSizeUser>::OutputSize>,
}

impl Hash {
	pub fn new(data: impl AsRef<[u8]>) -> Self {
		let mut hash = Blake2s256::new();

		hash.update(data);

		Self {
			data: hash.finalize(),
		}
	}

	pub fn update(&mut self, data: impl AsRef<[u8]>) {
		let mut hash = Blake2s256::new();

		hash.update(self.data);
		hash.update(data);

		self.data = hash.finalize();
	}
}

pub struct Handshake<T>
where
	T: RngCore + CryptoRng + Clone,
{
	ns: StaticSecret,

	hash: Hash,
	ck: Hash,

	k: chacha20poly1305::Key,
	n: u64,

	random: T,
}

fn array_from_slice(slice: &[u8]) -> [u8; 32] {
	let mut array = [0; 32];

	array.copy_from_slice(&slice[..32]);

	array
}

impl<T> Handshake<T>
where
	T: RngCore + CryptoRng + Clone,
{
	pub fn new(ns: StaticSecret, random: T) -> Self {
		let mut hash = Hash::new(NOISE);

		let ck = hash.clone();

		hash.update([]);

		Self {
			ns,

			hash,
			ck,

			k: chacha20poly1305::Key::default(),
			n: 0,

			random,
		}
	}

	fn mix_key(&mut self, data: &[u8]) {
		let ck = self.ck.data.as_slice();

		// With the chaining_key as HKDF salt.
		let hkdf = hkdf::SimpleHkdf::<blake2::Blake2s256>::new(Some(ck), data);

		let mut data = [0u8; 64];

		// And zero-length HKDF info.
		hkdf.expand(&[], data.as_mut_slice()).unwrap();

		self.ck.data.as_mut_slice().copy_from_slice(&data[..32]);
		self.k.as_mut_slice().copy_from_slice(&data[32..]);

		self.n = 0;
	}

	fn nonce(&self) -> Nonce {
		let mut nonce = [0u8; 12];

		nonce[4..].copy_from_slice(&self.n.to_le_bytes());

		Nonce::from(nonce)
	}

	fn decrypt(&mut self, m: &mut [u8]) {
		// We need to hash ciphertext, but we also need previous hash.
		let previous_hash = self.hash.clone();

		self.hash.update(&m);

		// Buffer with ciphertext for plaintext.
		let (data, tag_data) = m.split_at_mut(m.len() - 16);

		let tag = chacha20poly1305::Tag::from_slice(tag_data);

		ChaCha20Poly1305::new(&self.k)
			.decrypt_in_place_detached(&self.nonce(), previous_hash.data.as_slice(), data, tag)
			.unwrap();

		self.n = self.n.checked_add(1).unwrap();
	}

	fn encrypt(&mut self, m: &mut [u8]) {
		// Buffer with plaintext for ciphertext.
		let (data, tag_data) = m.split_at_mut(m.len() - 16);

		let tag = ChaCha20Poly1305::new(&self.k)
			.encrypt_in_place_detached(&self.nonce(), self.hash.data.as_slice(), data)
			.unwrap();

		tag_data.copy_from_slice(tag.as_slice());

		// We need to hash ciphertext.
		self.hash.update(m);

		self.n = self.n.checked_add(1).unwrap();
	}

	fn transport(self) -> (chacha20poly1305::Key, chacha20poly1305::Key) {
		let ck = self.ck.data.as_slice();

		// With the chaining_key as HKDF salt.
		let hkdf = hkdf::SimpleHkdf::<blake2::Blake2s256>::new(Some(ck), &[]);

		let mut data = [0u8; 64];

		// And zero-length HKDF info.
		hkdf.expand(&[], data.as_mut_slice()).unwrap();

		(
			Key::clone_from_slice(&data[..32]),
			Key::clone_from_slice(&data[32..]),
		)
	}

	pub fn make_message_a(&mut self, m: &mut [u8], rs: PublicKey) -> StaticSecret {
		// -> e, es, s, ss
		let ephemeral = StaticSecret::new(self.random.clone());

		self.hash.update(rs.as_bytes());

		// -> e
		let (ne, m) = m.split_at_mut(32);

		ne.copy_from_slice(PublicKey::from(&ephemeral).as_bytes());

		self.hash.update(ne);

		// -> e, es
		let shared = ephemeral.diffie_hellman(&rs);

		self.mix_key(shared.as_bytes());

		// -> e, es, s
		let (ns, m) = m.split_at_mut(48);

		ns[..32].copy_from_slice(PublicKey::from(&self.ns).as_bytes());

		self.encrypt(ns);

		// -> e, es, s, ss
		let shared = self.ns.diffie_hellman(&rs);

		self.mix_key(shared.as_bytes());

		// payload
		self.encrypt(m);

		ephemeral
	}

	pub fn read_message_a(&mut self, m: &mut [u8]) -> (PublicKey, PublicKey) {
		// <- e, se, s, ss
		self.hash.update(PublicKey::from(&self.ns).as_bytes());

		// <- e
		let (re, m) = m.split_at_mut(32);

		let remote_ephemeral = PublicKey::from(array_from_slice(re));

		self.hash.update(remote_ephemeral.as_bytes());

		// <- e, se
		let shared = self.ns.diffie_hellman(&remote_ephemeral);

		self.mix_key(shared.as_bytes());

		// <- e, se, s
		let (rs, m) = m.split_at_mut(48);

		self.decrypt(rs);

		let remote_static = PublicKey::from(array_from_slice(rs));

		// <- e, se, s, ss
		let shared = self.ns.diffie_hellman(&remote_static);

		self.mix_key(shared.as_bytes());

		// payload
		self.decrypt(m);

		(remote_ephemeral, remote_static)
	}

	pub fn make_message_b(mut self, m: &mut [u8], re: PublicKey, rs: PublicKey) -> Transport {
		// -> e, ee, es
		let ephemeral = StaticSecret::new(self.random.clone());

		// -> e
		let (ne, m) = m.split_at_mut(32);

		ne.copy_from_slice(PublicKey::from(&ephemeral).as_bytes());

		self.hash.update(ne);

		// -> e, ee
		let shared = ephemeral.diffie_hellman(&re);

		self.mix_key(shared.as_bytes());

		// -> e, ee, es
		let shared = ephemeral.diffie_hellman(&rs);

		self.mix_key(shared.as_bytes());

		// payload
		self.encrypt(m);

		// We responder
		let (decrypt, encrypt) = self.transport();

		Transport::new(encrypt, decrypt)
	}

	pub fn read_message_b(mut self, m: &mut [u8], ne: StaticSecret) -> Transport {
		// <- e, ee, se

		// <- e
		let (re, m) = m.split_at_mut(32);

		let remote_ephemeral = PublicKey::from(array_from_slice(re));

		self.hash.update(re);

		// <- e, ee
		let shared = ne.diffie_hellman(&remote_ephemeral);

		self.mix_key(shared.as_bytes());

		// <- e, ee, se
		let shared = self.ns.diffie_hellman(&remote_ephemeral);

		self.mix_key(shared.as_bytes());

		// payload
		self.decrypt(m);

		// We requester
		let (encrypt, decrypt) = self.transport();

		Transport::new(encrypt, decrypt)
	}
}

#[cfg(test)]
mod check {
	use x25519_dalek::{PublicKey, StaticSecret};

	use crate::check::{bad_rng::BadRng, resolve::MyResolver};

	use super::Handshake;

	mod bad_rng;
	mod blake2s;
	mod ciphers;
	mod dh25519;
	mod resolve;

	#[test]
	fn handshake() {
		// Fake RNG
		let random = BadRng(0);

		// Generate keys
		let server_ns = StaticSecret::new(random.clone());
		let client_ns = StaticSecret::new(random.clone());

		// Let client know server's static pkey
		let client_rs = PublicKey::from(&server_ns);

		// Initialize handshake states
		let mut server = Handshake::new(server_ns.clone(), random.clone());
		let mut client = Handshake::new(client_ns.clone(), random);

		// Initialize snow's ones for state comparison
		let mut server_snow =
			snow::Builder::with_resolver(super::NOISE.parse().unwrap(), Box::new(MyResolver))
				.local_private_key(&server_ns.to_bytes())
				.build_responder()
				.unwrap();
		let mut client_snow =
			snow::Builder::with_resolver(super::NOISE.parse().unwrap(), Box::new(MyResolver))
				.local_private_key(&client_ns.to_bytes())
				.remote_public_key(client_rs.as_bytes())
				.build_initiator()
				.unwrap();

		// Allocate buffers
		let mut message_a_snow = [0u8; 32 + 32 + 16 + 16];
		let mut message_a = message_a_snow.clone();

		let mut message_b_snow = [0u8; 32 + 16];
		let mut message_b = message_b_snow.clone();

		// Make 1st messages
		client_snow.write_message(&[], &mut message_a_snow).unwrap();

		let client_ne = client.make_message_a(&mut message_a, client_rs);

		// Check that states were the same
		assert_eq!(message_a_snow, message_a);

		// Consume 1st messages
		server_snow.read_message(&message_a_snow, &mut []).unwrap();

		let (server_re, server_rs) = server.read_message_a(&mut message_a);

		// Make 2nd messages
		server_snow.write_message(&[], &mut message_b_snow).unwrap();

		let mut server_ts = server.make_message_b(&mut message_b, server_re, server_rs);

		// Check that states were the same
		assert_eq!(message_b_snow, message_b);

		// Consume 2nd messages
		client_snow.read_message(&message_b_snow, &mut []).unwrap();

		let mut client_ts = client.read_message_b(&mut message_b, client_ne);

		// Convert snow's handshake into transport state
		let mut server_ts_snow = server_snow.into_transport_mode().unwrap();
		let mut client_ts_snow = client_snow.into_transport_mode().unwrap();

		// Allocate buffers
		let mut message = [0; 32];
		let mut message_snow = [0; 32];

		for _ in 0..6 {
			// Make messages
			client_ts_snow
				.write_message(&message[..16], &mut message_snow)
				.unwrap();

			let length = message.len();

			let (data, tag_data) = message.split_at_mut(length - 16);

			client_ts.encrypt(data, tag_data);

			// Check that states were the same
			assert_eq!(message, message_snow);

			// Consume messages
			server_ts_snow
				.read_message(&message, &mut message_snow)
				.unwrap();

			let length = message.len();

			let (data, tag_data) = message.split_at_mut(length - 16);

			server_ts.decrypt(data, tag_data);

			// Check that states were the same
			assert_eq!(message, message_snow);
		}
	}
}