1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
/*!
`handoff` is a single-producer / single-consumer, unbuffered, asynchronous
channel. It's intended for cases where you want blocking communication between
two async components, where all sends block until the receiver receives the
item.

A new channel is created with [`channel`], which returns a [`Sender`] and
[`Receiver`]. Items can be sent into the channel with [`Sender::send`], and
received with [`Receiver::recv`]. [`Receiver`] also implements
[`futures::Stream`]. Either end of the channel can be dropped, which will
cause the other end to unblock and report channel disconnection.

While the channel operates asynchronously, it can also be used in a fully
synchronous way by using `block_on` or similar utilities provided in most
async runtimes.

# Examples

## Basic example

```rust
# futures::executor::block_on(async move {
use handoff::channel;
use futures::future::join;

let (mut sender, mut receiver) = channel();

let send_task = async move {
    for i in 0..100 {
        sender.send(i).await.expect("channel disconnected");
    }
};

let recv_task = async move {
    for i in 0..100 {
        let value = receiver.recv().await.expect("channel disconnected");
        assert_eq!(value, i);
    }
};

// All sends block until the receiver accepts the value, so we need to make
// sure the tasks happen concurrently
join(send_task, recv_task).await;
# });
```

## Synchronous use

```
use std::thread;
use handoff::channel;
use futures::executor::block_on;

let (mut sender, mut receiver) = channel();

let sender_thread = thread::spawn(move || {
    for i in 0..100 {
        block_on(sender.send(i)).expect("receiver disconnected");
    }
});

let receiver_thread = thread::spawn(move || {
    for i in 0..100 {
        let value = block_on(receiver.recv()).expect("sender disconnected");
        assert_eq!(value, i);
    }
});

sender_thread.join().expect("sender panicked");
receiver_thread.join().expect("receiver panicked");
```

## Disconnect

```
# futures::executor::block_on(async move {
use handoff::channel;
use futures::future::join;

let (mut sender, mut receiver) = channel();

let send_task = async move {
    for i in 0..50 {
        sender.send(i).await.expect("channel disconnected");
    }
};

let recv_task = async move {
    for i in 0..50 {
        let value = receiver.recv().await.expect("channel disconnected");
        assert_eq!(value, i);
    }

    assert!(receiver.recv().await.is_none());
};

// All sends block until the receiver accepts the value, so we need to make
// sure the tasks happen concurrently
join(send_task, recv_task).await;
# });
```
*/

#![deny(missing_docs)]
#![deny(missing_debug_implementations)]

use std::{
    cell::UnsafeCell,
    fmt::Debug,
    future::Future,
    hint::unreachable_unchecked,
    ops::Not,
    pin::Pin,
    ptr::{self, NonNull},
    sync::atomic::{
        AtomicPtr,
        Ordering::{Acquire, Relaxed, Release},
    },
    task::{Context, Poll},
    thread,
};

trait UnsafeCellExt<T> {
    #[must_use]
    fn get_non_null(&self) -> NonNull<T>;
}

impl<T> UnsafeCellExt<T> for UnsafeCell<T> {
    #[inline]
    #[must_use]
    fn get_non_null(&self) -> NonNull<T> {
        NonNull::new(self.get()).expect("UnsafeCell shouldn't return a null pointer")
    }
}

use futures_util::{stream::FusedStream, task::AtomicWaker, Stream, StreamExt};
use pin_project::{pin_project, pinned_drop};
use pinned_aliasable::Aliasable;
use thiserror::Error;
use twinsies::Joint;

/// Identical to `unreachable_unchecked`, but panics in debug mode. Still
/// requires unsafe.
macro_rules! debug_unreachable {
    ($($arg:tt)*) => {
        match cfg!(debug_assertions) {
            true => unreachable!($($arg)*),
            false => unreachable_unchecked(),
        }
    }
}

/// Create an unbuffered channel for communicating between a pair of
/// asynchronous components. All sends over this channel will block until the
/// receiver receives the sent item. See [crate documentation][crate] for
/// details.
pub fn channel<T>() -> (Sender<T>, Receiver<T>) {
    let (send_joint, recv_joint) = Joint::new(Inner {
        sent_item: AtomicPtr::default(),
        sender_waker: AtomicWaker::new(),
        receiver_waker: AtomicWaker::new(),
    });

    (Sender { inner: send_joint }, Receiver { inner: recv_joint })
}

struct Inner<T> {
    // When this is not null, there's an object that a sender is trying to send
    // (and is asynchronously blocked until the send completes)
    sent_item: AtomicPtr<Option<T>>,

    // The waker owned by the sender. Should be signalled when the receiver
    // takes a value (or disconnects)
    sender_waker: AtomicWaker,

    // The waker owned by the receiver. Should be signalled when the sender has
    // an item to send (or disconnects)
    receiver_waker: AtomicWaker,
}

unsafe impl<T> Send for Inner<T> {}
unsafe impl<T> Sync for Inner<T> {}

impl<T> Inner<T> {
    /// The sender uses this to take an item pointer that it placed there, to
    /// regain exclusive access to its item.
    #[inline]
    fn reclaim_sent_item_pointer(&self, item_pointer: NonNull<Option<T>>) {
        loop {
            match self.sent_item.compare_exchange_weak(
                item_pointer.as_ptr(),
                ptr::null_mut(),
                Acquire,
                Relaxed,
            ) {
                Ok(_) => break,

                // Spurious failure
                Err(current) if current == item_pointer.as_ptr() => continue,

                // Receiver owns the value; spin while we wait for it
                //
                // TODO: consider using something like the spinner from
                // parking_lot_core. We're pretty certain that another thread is
                // working with the pointer, though, so for now we're content to
                // do a full yield and let it have a chance to finish its work.
                Err(current) if current.is_null() => thread::yield_now(),

                // Something very wrong happened
                Err(current) => unsafe {
                    debug_unreachable!(
                        "A new pointer ({current:p}) appeared in inner \
                        while a sender exists ({item_pointer:p}); this \
                        should never happen"
                    )
                },
            }
        }
    }
}

/// Whenever `Inner` drops, it means a disconnect is happening. Inform the
/// sender and receiver (though one of them, of course, is being dropped
/// anyway). It's guaranteed that, once `Inner::drop` is called, the `Joint`
impl<T> Drop for Inner<T> {
    fn drop(&mut self) {
        self.sender_waker.wake();
        self.receiver_waker.wake();
    }
}

/// The sending end of a handoff channel.
///
/// This object is created by the [`channel`] function. See [crate
/// documentation][crate] for details.
pub struct Sender<T> {
    inner: Joint<Inner<T>>,
}

impl<T> Sender<T> {
    /// Asynchronously send an item to the receiver.
    ///
    /// This method will asynchronously block until the receiver has received
    /// the item. If the receiver disconnects, this will instead return a
    /// [`SendError`] containing the item that failed to send.
    #[inline]
    #[must_use]
    pub fn send(&mut self, item: T) -> SendFut<'_, T> {
        SendFut {
            item: Aliasable::new(UnsafeCell::new(Some(item))),
            inner: &self.inner,
            item_lent: false,
        }
    }

    // TODO: `Sink` implementation. This will require wrapping the sender. Need
    // to decide if we prefer a by-move or by-ref sink (probably the latter).
    // Alternatively, create a crate with a general-purpose adapter between
    // `async fn send` and `Sink`.
}

impl<T> Debug for Sender<T> {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.debug_struct("Sender")
            .field("inner", &self.inner)
            .finish()
    }
}

unsafe impl<T: Send> Send for Sender<T> {}

/// Future for sending a single item through a [`Sender`], created by the
/// [`send`][Sender::send] method. See its documentation for details.
#[pin_project(PinnedDrop)]
pub struct SendFut<'a, T> {
    // Implementation note: It is critically important to remember that the
    // contents of the cell here can be aliased even when we have a reference
    // to it, so long as it's pinned. See the `Aliasable` docs for details.
    #[pin]
    item: Aliasable<UnsafeCell<Option<T>>>,

    // We don't want to hold a `JointLock` on the Inner<T>; we want to
    // check each time we're polled if there was a disconnect.
    inner: &'a Joint<Inner<T>>,

    // If item_lent is true, it means that `Inner` has ownership of `item`
    // and we need to re-acquire the pointer before doing anything with
    // it.
    item_lent: bool,
}

impl<T> Debug for SendFut<'_, T> {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.debug_struct("SendFut")
            .field("item", &"<in transit>")
            .field("inner", &self.inner)
            .field("item_lent", &self.item_lent)
            .finish()
    }
}

impl<T> Future for SendFut<'_, T> {
    type Output = Result<(), SendError<T>>;

    #[inline]
    fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
        let this = self.project();

        let mut item_pointer = this.item.as_ref().get().get_non_null();

        let Some(lock) = this.inner.lock() else {
            return Poll::Ready(
                // Safety: if we couldn't acquire a lock, it means that the
                // `Inner` dropped, which means we definitely have exclusive
                // access to the value.
                match unsafe { item_pointer.as_mut() }
                    .take()
                {
                    Some(item) => Err(SendError(item)),
                    None => Ok(()),
                },
            )
        };

        // If we've published the item pointer for the receiver to take, check
        // to see if it successfully took the item.
        if *this.item_lent {
            // If we've previously polled, we're aiming to check and see if the
            // item has been taken by the receiver yet. We need to first take
            // the `item` pointer, to ensure we have exclusive access to the
            // item
            lock.reclaim_sent_item_pointer(item_pointer);

            // For consistency, we always update this field after reclaiming the
            // pointer. We specifically want it to be false so that our
            // destructor knows it doesn't need to do any additional work.
            *this.item_lent = false;

            // We've acquired exclusive access to the item pointer; we can check
            // to see if the item was taken yet.
            if unsafe { item_pointer.as_ref() }.is_none() {
                return Poll::Ready(Ok(()));
            }
        }

        // At this point, we've either never been polled before, or we have been
        // polled previously but we still have the item. The state is the same
        // either way: the `Inner` contains a null pointer and we need to notify
        // the receiver that a value is ready.
        //
        // Theoretically, the inner pointer could be non-null, but this only
        // happens if we leaked a `send` future, so we can just clobber it.
        // Similarly, we can theoretically not have the item, if we're polled
        // again after returning Ready. Neither of these cause unsoundness.
        debug_assert!(
            unsafe { item_pointer.as_ref() }.is_some(),
            "Don't poll futures after they returned success"
        );

        lock.sender_waker.register(cx.waker());
        lock.sent_item.store(item_pointer.as_ptr(), Release);
        lock.receiver_waker.wake();
        *this.item_lent = true;

        Poll::Pending
    }
}

#[pinned_drop]
impl<T> PinnedDrop for SendFut<'_, T> {
    fn drop(self: Pin<&mut Self>) {
        let this = self.project();

        // We only need to do extra drop work if `Inner` has exclusive access to
        // our `item`.
        if this.item_lent.not() {
            return;
        };

        // If we disconnected, there's nothing else we need to do. Even if
        // `item_lent` was true, `inner` was dropped and implicitly doesn't have
        // access to the `item` anymore.
        let Some(lock) = this.inner.lock() else {
            return;
        };

        // When an individual send future drops, we can immediately
        // erase the waker. No send notification are necessary until a
        // new send future appears.
        drop(lock.sender_waker.take());

        let item_pointer = this.item.into_ref().get().get_non_null();

        // Okay, we need to acquire the pointer before we can drop. This
        // might involve spinning if the receiver is working with it
        // right now.
        lock.reclaim_sent_item_pointer(item_pointer);
        // Now that we've reclaimed the pointer, we don't need to do
        // anything else. The drop can proceed normally.
    }
}

unsafe impl<T: Send> Send for SendFut<'_, T> {}

// TODO: verify that this is sound. I believe it is in all practical
// cases, since there isn't actually any uncontrolled mechanism in this
// crate by which a reference to `item` might be used while it's owned
// by the channel
unsafe impl<T> Sync for SendFut<'_, T> {}

/// The receiving end of a handoff channel.
///
/// This object is created by the [`channel`] function. See [crate
/// documentation][crate] for details.
///
/// [`Receiver`] only provides a simple [`recv`][Receiver::recv] method on its
/// own, but it also implements [`futures::StreamExt`], which provides a number
/// of additional helpful iterator-like methods.
pub struct Receiver<T> {
    inner: Joint<Inner<T>>,
}

impl<T> Receiver<T> {
    /// Attempt to receive the next item from the sender.
    ///
    /// This method will asynchronously block until the sender sends an item,
    /// then return that item. Alternatively, if the sender disconnects, this
    /// will return `None`.
    #[inline]
    pub fn recv(&mut self) -> RecvFut<'_, T> {
        RecvFut { receiver: self }
    }
}

unsafe impl<T: Send> Send for Receiver<T> {}

impl<T> Debug for Receiver<T> {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.debug_struct("Receiver")
            .field("inner", &self.inner)
            .finish()
    }
}

impl<T> Stream for Receiver<T> {
    type Item = T;

    fn poll_next(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
        let Some(lock) = self.inner.lock() else { return Poll::Ready(None) };

        // All of the logic for actually attempting to take an item from
        // `inner`. We have to call this twice, because we first try to take an
        // item, then register a waker, then we have to try again after
        // registering the waker. This avoids a race where we fail to retrieve
        // and item, then the sender places an item, then the sender calls
        // wake() before we've registered our waker.
        //
        // TODO: bench {recv; register(waker); recv} against {register(waker); recv}

        let try_recv = || loop {
            // Acquire the pointer. As long as we have it, we have exclusive
            // access to the item. The sender will wait for us to return the
            // pointer before dropping (or, if it leaks, the value is pinned, so
            // the pointer is valid forever in that case).
            let sent_item_ptr = lock.sent_item.swap(ptr::null_mut(), Acquire);

            // If there wasn't a pointer available, we've already registered our
            // waker, so at this point we're waiting for a signal to try another
            // receive operation.
            let Some(mut sent_item_ptr) = NonNull::new(sent_item_ptr) else {
                return Poll::Pending
            };

            // Try to read the item from the pointer. It's possible that we've
            // already taken it and this is a spurious poll.
            //
            // SAFETY: Because we acquired the `sent_item_ptr` (replacing it
            // with a null ptr), we have exclusive access to it.
            let sent_item = unsafe { sent_item_ptr.as_mut() }.take();

            // We don't need to retry (non-spurious) failures, since the
            // presence of a new non-null pointer indicates a sender leak, which
            // means we can simply drop the `sent_item_ptr` outright.
            match lock.sent_item.compare_exchange(
                ptr::null_mut(),
                sent_item_ptr.as_ptr(),
                Release,
                Relaxed,
            ) {
                // We restored the pointer, so we need to wake the sender so it
                // can proceed with the drop
                Ok(_) => lock.sender_waker.wake(),

                // Somehow the pointer to a pinned object found its way back
                // into the slot. This shouldn't be possible, since that memory
                // should be usable until the sender finishes sending, and it
                // can't drop until we restore the pointer.
                Err(p) if p == sent_item_ptr.as_ptr() => unsafe { debug_unreachable!() },

                // There was a leak and a new sent item arrived while we were
                // working. If we didn't receive an item, we can retry receiving
                // this *new* item.
                Err(_) if sent_item.is_none() => continue,

                // There was a leak and a new sent item arrived while we were
                // working. We already got an item, so we have to leave the new
                // one there until a subsequent `recv`.
                Err(_) => {}
            }

            return match sent_item {
                Some(item) => Poll::Ready(Some(item)),
                None => Poll::Pending,
            };
        };

        match try_recv() {
            Poll::Ready(item) => Poll::Ready(item),
            Poll::Pending => {
                lock.receiver_waker.register(cx.waker());
                try_recv()
            }
        }
    }

    #[inline]
    #[must_use]
    fn size_hint(&self) -> (usize, Option<usize>) {
        (0, if self.inner.alive() { None } else { Some(0) })
    }
}

impl<T> FusedStream for Receiver<T> {
    fn is_terminated(&self) -> bool {
        !self.inner.alive()
    }
}

// TODO: this drop is only necessary if the receiver has been acting as a
// `futures::Stream`. Consider creating a separate wrapper around it that
// implements stream.
impl<T> Drop for Receiver<T> {
    fn drop(&mut self) {
        let Some(lock) = self.inner.lock() else { return };
        drop(lock.receiver_waker.take())
    }
}

/// Future type for receiving a single item from a [`Receiver`]. Created by the
/// [`recv`][Receiver::recv] method; see its documentation for details.
pub struct RecvFut<'a, T> {
    receiver: &'a mut Receiver<T>,
}

impl<T> Debug for RecvFut<'_, T> {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.debug_struct("Recv")
            .field("receiver", &self.receiver)
            .finish()
    }
}

impl<T> Future for RecvFut<'_, T> {
    type Output = Option<T>;

    #[inline]
    fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
        self.receiver.poll_next_unpin(cx)
    }
}

impl<T> Drop for RecvFut<'_, T> {
    #[inline]
    fn drop(&mut self) {
        let Some(lock) = self.receiver.inner.lock() else { return };
        drop(lock.receiver_waker.take())
    }
}

/// An error from a [`send()`][Sender::send] operation.
///
/// This error means the send failed due to a disconnect; this is the only way
/// sends can fail. The error contains the item that failed to send.
#[derive(Error, Clone, Debug, Copy)]
#[error("tried to send on a disconnected channel")]
pub struct SendError<T>(
    /// The item that failed to send
    pub T,
);

#[cfg(test)]
mod tests {
    use std::thread;

    use cool_asserts::assert_matches;
    use futures::{executor::block_on, StreamExt};

    use super::{channel, SendError};

    #[tokio::test]
    async fn basic_test() {
        let (mut sender, receiver) = channel();

        let sender_task = tokio::task::spawn(async move {
            sender.send(1).await.unwrap();
            sender.send(2).await.unwrap();
            sender.send(3).await.unwrap();
            sender.send(4).await.unwrap();
        });

        let data: Vec<i32> = receiver.collect().await;
        sender_task.await.unwrap();

        assert_eq!(data, [1, 2, 3, 4]);
    }

    #[tokio::test]
    async fn taskless() {
        let (mut sender, mut receiver) = channel();

        let (send, recv) = futures::future::join(sender.send(1), receiver.next()).await;
        send.unwrap();
        assert_eq!(recv.unwrap(), 1);

        let (recv, send) = futures::future::join(receiver.next(), sender.send(2)).await;
        send.unwrap();
        assert_eq!(recv.unwrap(), 2);
    }

    #[tokio::test(flavor = "multi_thread", worker_threads = 4)]
    async fn multi_thread_tasks() {
        let (mut sender, mut receiver) = channel();

        let sender_task = tokio::task::spawn(async move {
            for i in 0..1_000 {
                sender.send(i).await.unwrap();
            }
        });

        let receiver_task = tokio::task::spawn(async move {
            for i in 0..1_000 {
                assert_eq!(receiver.next().await.unwrap(), i);
            }
        });

        sender_task.await.unwrap();
        receiver_task.await.unwrap();
    }

    #[test]
    fn sync_test() {
        let (mut sender, mut receiver) = channel();

        let sender_thread = thread::Builder::new()
            .name("sender thread".to_owned())
            .spawn(move || {
                block_on(async move {
                    for i in 0..1_000 {
                        sender.send(i).await.unwrap();
                    }
                })
            })
            .expect("failed to spawn thread");

        for i in 0..1_000 {
            assert_eq!(block_on(receiver.next()).unwrap(), i);
        }

        sender_thread.join().unwrap();
    }

    #[test]
    fn sync_test_two_threads() {
        let (mut sender, mut receiver) = channel();

        let sender_thread = thread::spawn(move || {
            for i in 0..100 {
                block_on(sender.send(i)).expect("receiver disconnected");
            }
        });

        let receiver_thread = thread::spawn(move || {
            for i in 0..100 {
                let value = block_on(receiver.recv()).expect("sender disconnected");
                assert_eq!(value, i);
            }
        });

        sender_thread.join().expect("sender panicked");
        receiver_thread.join().expect("receiver panicked");
    }

    #[tokio::test]
    async fn basic_sender_close() {
        let (sender, mut receiver) = channel();

        drop(sender);

        let out: Option<i32> = receiver.recv().await;
        assert_eq!(out, None);
    }

    #[tokio::test]
    async fn basic_receiver_close() {
        let (mut sender, receiver) = channel();

        drop(receiver);

        assert_matches!(sender.send(1).await, Err(SendError(1)));
    }

    #[tokio::test]
    async fn sender_close_while_waiting() {
        let (sender, mut receiver) = channel();

        let sender_task = tokio::task::spawn(async move {
            tokio::task::yield_now().await;
            drop(sender);
        });

        let out: Option<i32> = receiver.recv().await;
        assert_eq!(out, None);
        sender_task.await.unwrap();
    }

    #[tokio::test]
    async fn receiver_close_while_waiting() {
        let (mut sender, receiver) = channel();

        let receiver_task = tokio::task::spawn(async move {
            tokio::task::yield_now().await;
            drop(receiver);
        });

        assert_matches!(sender.send(1).await, Err(SendError(1)));
        receiver_task.await.unwrap();
    }

    #[tokio::test]
    async fn sender_cancels() {
        let (mut sender, mut receiver) = channel();

        let sender_task = tokio::task::spawn(async move {
            sender.send(1).await.unwrap();
            sender.send(2).await.unwrap();
        });

        assert_eq!(receiver.next().await.unwrap(), 1);
        sender_task.abort();
        assert_matches!(receiver.next().await, None);
        assert_matches!(sender_task.await, Err(err) => assert!(err.is_cancelled()));
    }

    // TODO: test sender leak

    // TODO: bench compare various channels
}