handlegraph 0.6.0

Library for use in variation graphs
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
use crate::packed::{self, *};

use super::{
    defragment::Defragment,
    graph::{NodeRecordId, RecordIndex},
    index::OneBasedIndex,
};

// An index into both the offset record and the length record for some
// sequence. It's a simple index into a packed vector, but the order
// must be the same as the node records vector in the graph.
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct SeqRecordIx(usize);

crate::impl_space_usage_stack_newtype!(SeqRecordIx);

impl SeqRecordIx {
    #[inline]
    fn new<I: Into<usize>>(x: I) -> Self {
        Self(x.into())
    }
}

impl RecordIndex for SeqRecordIx {
    const RECORD_WIDTH: usize = 1;

    #[inline]
    fn from_one_based_ix<I: OneBasedIndex>(ix: I) -> Option<Self> {
        ix.to_record_start(Self::RECORD_WIDTH).map(SeqRecordIx)
    }

    #[inline]
    fn to_one_based_ix<I: OneBasedIndex>(self) -> I {
        I::from_record_start(self.0, Self::RECORD_WIDTH)
    }

    #[inline]
    fn record_ix(self, _: usize) -> usize {
        self.0
    }
}

#[derive(Debug, Clone)]
pub struct Sequences {
    sequences: PackedIntVec,
    lengths: PackedIntVec,
    offsets: PagedIntVec,
    removed_records: Vec<SeqRecordIx>,
}

crate::impl_space_usage!(
    Sequences,
    [sequences, lengths, offsets, removed_records]
);

impl Default for Sequences {
    fn default() -> Self {
        Sequences {
            sequences: Default::default(),
            lengths: Default::default(),
            offsets: PagedIntVec::new(super::graph::NARROW_PAGE_WIDTH),
            removed_records: Vec::new(),
        }
    }
}

impl Sequences {
    /// Add a new, empty sequence record.

    pub(super) fn append_empty_record(&mut self) {
        self.lengths.append(0);
        self.offsets.append(0);
    }

    fn set_record(
        &mut self,
        seq_ix: SeqRecordIx,
        offset: usize,
        length: usize,
    ) {
        let ix = seq_ix.at_0();
        self.lengths.set_pack(ix, length);
        self.offsets.set_pack(ix, offset);
    }

    fn get_record(&self, seq_ix: SeqRecordIx) -> (usize, usize) {
        let ix = seq_ix.at_0();

        let offset: usize = self.offsets.get_unpack(ix);
        let length: usize = self.lengths.get_unpack(ix);

        (offset, length)
    }

    pub(super) fn clear_record(&mut self, seq_ix: SeqRecordIx) {
        let ix = seq_ix.at_0();

        self.offsets.set(ix, 0);
        self.lengths.set(ix, 0);

        self.removed_records.push(seq_ix);
    }

    fn append_record(&mut self, offset: usize, length: usize) -> SeqRecordIx {
        let seq_ix = SeqRecordIx::new(self.lengths.len());

        self.lengths.append(length as u64);
        self.offsets.append(offset as u64);
        seq_ix
    }

    /// Adds a sequence and updates the sequence records for the
    /// provided `NodeRecordId` to the correct length and offset.
    pub(super) fn add_sequence(
        &mut self,
        rec_id: NodeRecordId,
        seq: &[u8],
    ) -> Option<SeqRecordIx> {
        let seq_ix = SeqRecordIx::from_one_based_ix(rec_id)?;

        let len = seq.len();
        let offset = self.sequences.len();

        self.set_record(seq_ix, offset, len);

        seq.iter()
            .for_each(|&b| self.sequences.append(encode_dna_base(b)));

        Some(seq_ix)
    }

    /// Overwrites the sequence for the provided `GraphRecordIx` with
    /// `seq`. The provided sequence must have exactly the same length
    /// as the old one.
    pub(super) fn overwrite_sequence(
        &mut self,
        rec_id: NodeRecordId,
        seq: &[u8],
    ) {
        let seq_ix = SeqRecordIx::from_one_based_ix(rec_id).unwrap();

        let (old_len, offset) = self.get_record(seq_ix);

        assert!(old_len == seq.len());

        for (i, b) in seq.iter().copied().enumerate() {
            let ix = offset + i;
            self.sequences.set(ix, encode_dna_base(b));
        }
    }

    /// Splits the sequence at the provided `SeqRecordIx` into
    /// multiple sequences, using the provided slice of `lengths` to
    /// create the new sequence records.

    /// The first element of the `lengths` slice is the new length of
    /// the sequence at the provided `seq_ix`; the second slice is the
    /// length of the first new sequence record, and so on. The sum of
    /// the provided lengths must be less than or equal to the length
    /// of the original sequence; if it's shorter, a final sequence
    /// record will be added with the missing length.
    ///
    /// Returns `None` if the `lengths` slice is somehow incorrect,
    /// otherwise returns the new indices of the new sequence records.
    /// New nodes/graph records *must* be added to match the new
    /// sequence records.
    #[must_use]
    pub(super) fn split_sequence(
        &mut self,
        seq_ix: SeqRecordIx,
        lengths: &[usize],
    ) -> Option<Vec<SeqRecordIx>> {
        let (seq_offset, seq_len) = self.get_record(seq_ix);

        let lengths_sum: usize = lengths.iter().sum();
        if lengths_sum > seq_len {
            return None;
        }

        let extra_record = seq_len - lengths_sum;
        let new_count = if extra_record == 0 {
            lengths.len()
        } else {
            lengths.len() + 1
        };

        // shorten the length of the original record
        self.lengths.set_pack(seq_ix.at_0(), lengths[0]);

        let mut results = Vec::with_capacity(new_count);

        let mut offset = seq_offset + lengths[0];

        for &len in lengths.iter().skip(1) {
            let new_seq_ix = self.append_record(offset, len);
            results.push(new_seq_ix);
            offset += len;
        }

        if extra_record > 0 {
            let new_seq_ix = self.append_record(offset, extra_record);
            results.push(new_seq_ix);
        }

        Some(results)
    }

    #[inline]
    pub(super) fn length(&self, rec_id: NodeRecordId) -> usize {
        let seq_ix = SeqRecordIx::from_one_based_ix(rec_id).unwrap();
        self.lengths.get_unpack(seq_ix.at_0())
    }

    #[inline]
    pub(super) fn total_length(&self) -> usize {
        self.lengths.iter().sum::<u64>() as usize
    }

    fn iter_impl(
        &self,
        offset: usize,
        len: usize,
        reverse: bool,
    ) -> PackedSeqIter<'_> {
        let iter = self.sequences.iter_slice(offset, len);

        PackedSeqIter {
            iter,
            length: len,
            reverse,
        }
    }

    pub(super) fn iter(
        &self,
        seq_ix: SeqRecordIx,
        reverse: bool,
    ) -> PackedSeqIter<'_> {
        let (offset, len) = self.get_record(seq_ix);
        self.iter_impl(offset, len, reverse)
    }
}

impl Defragment for Sequences {
    /// Unlike Defragment implementations for things like edges, where
    /// the pre-defragmentation identifiers are used by other objects,
    /// and the updates need to be provided to ensure other objects
    /// don't hold invalidated indices, that's not the case here, as
    /// the sequence offsets are internal.
    type Updates = ();

    fn defragment(&mut self) -> Option<()> {
        let total_len = self.offsets.len();
        let mut next_offset = 0;
        let mut new_seqs = Self::default();

        new_seqs
            .lengths
            .reserve(self.offsets.len() - self.removed_records.len());
        new_seqs
            .offsets
            .reserve(self.offsets.len() - self.removed_records.len());

        for ix in 0..total_len {
            let seq_ix = SeqRecordIx(ix);
            let (old_offset, length) = self.get_record(seq_ix);
            if length != 0 {
                let new_offset = next_offset;
                let seq_iter = self.iter_impl(old_offset, length, false);
                new_seqs.lengths.append(length as u64);
                new_seqs.offsets.append(new_offset as u64);
                seq_iter.for_each(|b| {
                    new_seqs.sequences.append(encode_dna_base(b))
                });

                next_offset += length;
            }
        }

        crate::assign_for_fields!(
            self,
            new_seqs,
            [sequences, lengths, offsets],
            |mut x| std::mem::take(&mut x)
        );

        self.removed_records.clear();

        Some(())
    }
}

pub struct PackedSeqIter<'a> {
    iter: packed::vector::Iter<'a>,
    length: usize,
    reverse: bool,
}

impl<'a> Iterator for PackedSeqIter<'a> {
    type Item = u8;

    #[inline]
    fn next(&mut self) -> Option<u8> {
        if self.reverse {
            let base = self.iter.next_back()?;
            Some(decode_dna_base(encoded_complement(base)))
        } else {
            let base = self.iter.next()?;
            Some(decode_dna_base(base))
        }
    }
}

impl<'a> std::iter::ExactSizeIterator for PackedSeqIter<'a> {
    #[inline]
    fn len(&self) -> usize {
        self.length
    }
}

const fn dna_encoding_table() -> [u64; 256] {
    let mut table: [u64; 256] = [4; 256];

    let pairs: [(u8, u64); 8] = [
        (b'a', 0),
        (b'A', 0),
        (b'c', 1),
        (b'C', 1),
        (b'g', 2),
        (b'G', 2),
        (b't', 3),
        (b'T', 3),
    ];

    let mut i = 0;

    while i < 8 {
        let (base, value) = pairs[i];
        table[base as usize] = value;
        i += 1;
    }

    table
}

const fn encoded_complement_table() -> [u64; 5] {
    let mut table: [u64; 5] = [0; 5];
    let mut i = 0;

    while i < 5 {
        if i == 4 {
            table[i] = 4;
        } else {
            table[i] = 3 - (i as u64);
        }
        i += 1;
    }
    table
}

const DNA_ENCODING_TABLE: [u64; 256] = dna_encoding_table();
const ENCODED_COMPLEMENT_TABLE: [u64; 5] = encoded_complement_table();
const DNA_DECODING_TABLE: [u8; 5] = [b'A', b'C', b'G', b'T', b'N'];

#[inline]
const fn encode_dna_base(base: u8) -> u64 {
    DNA_ENCODING_TABLE[base as usize]
}

#[inline]
const fn encoded_complement(val: u64) -> u64 {
    if val > 3 {
        ENCODED_COMPLEMENT_TABLE[4]
    } else {
        let v = val as u8;
        ENCODED_COMPLEMENT_TABLE[v as usize]
    }
}

#[inline]
const fn decode_dna_base(val: u64) -> u8 {
    if val > 3 {
        DNA_DECODING_TABLE[4]
    } else {
        DNA_DECODING_TABLE[val as usize]
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn packedgraph_split_sequence() {
        use bstr::{BString, B};
        let mut seqs = Sequences::default();
        let g0 = NodeRecordId::unpack(1);
        seqs.append_empty_record();

        let s0 = seqs.add_sequence(g0, b"GTCCACTTTGTGT").unwrap();

        let seq_bstr = |sq: &Sequences, ix: SeqRecordIx| -> BString {
            sq.iter(ix, false).collect()
        };
        assert_eq!(B("GTCCACTTTGTGT"), seq_bstr(&seqs, s0));

        let lens = vec![6, 3, 4];

        let seq_indices = seqs.split_sequence(s0, &lens).unwrap();

        assert_eq!(B("GTCCAC"), seq_bstr(&seqs, s0));

        assert_eq!(B("TTT"), seq_bstr(&seqs, seq_indices[0]));
        assert_eq!(B("GTGT"), seq_bstr(&seqs, seq_indices[1]));
    }

    #[test]
    fn defragment_sequence() {
        let mut seqs = Sequences::default();
        let g0 = NodeRecordId::unpack(1);
        let g1 = NodeRecordId::unpack(2);
        let g2 = NodeRecordId::unpack(3);
        let g3 = NodeRecordId::unpack(4);
        seqs.append_empty_record();
        seqs.append_empty_record();
        seqs.append_empty_record();
        seqs.append_empty_record();

        let s0 = seqs.add_sequence(g0, b"GTCCACTTTGTGT").unwrap();
        let s1 = seqs.add_sequence(g1, b"GTCCAGT").unwrap();
        let s2 = seqs.add_sequence(g2, b"CACGCTGT").unwrap();
        let s3 = seqs.add_sequence(g3, b"AAATGTAAA").unwrap();

        let total_len = seqs.sequences.len();
        assert_eq!(total_len, 37);

        assert_eq!(seqs.get_record(s0), (0, 13));
        assert_eq!(seqs.get_record(s1), (13, 7));
        assert_eq!(seqs.get_record(s2), (20, 8));
        assert_eq!(seqs.get_record(s3), (28, 9));

        seqs.clear_record(s2);

        assert_eq!(seqs.get_record(s0), (0, 13));
        assert_eq!(seqs.get_record(s1), (13, 7));
        assert_eq!(seqs.get_record(s2), (0, 0));
        assert_eq!(seqs.get_record(s3), (28, 9));

        let _new_offsets = seqs.defragment().unwrap();

        let total_len = seqs.sequences.len();
        assert_eq!(total_len, 29);

        assert_eq!(seqs.get_record(s0), (0, 13));
        assert_eq!(seqs.get_record(s1), (13, 7));
        assert_eq!(seqs.get_record(s2), (20, 9));

        seqs.clear_record(s0);

        assert_eq!(seqs.get_record(s0), (0, 0));
        assert_eq!(seqs.get_record(s1), (13, 7));
        assert_eq!(seqs.get_record(s2), (20, 9));

        let _new_offsets = seqs.defragment().unwrap();

        let total_len = seqs.sequences.len();
        assert_eq!(total_len, 16);

        assert_eq!(seqs.get_record(s0), (0, 7));
        assert_eq!(seqs.get_record(s1), (7, 9));
    }
}