Struct halfbrown::SizedHashMap

source ·
pub struct SizedHashMap<K, V, S = DefaultHashBuilder, const VEC_LIMIT_UPPER: usize = 32>(/* private fields */);
Expand description

Maximum nymber of elements before the representaiton is swapped from Vec to HashMap SizedHashMap implementation that alternates between a vector and a hashmap to improve performance for low key counts. With a configurable upper vector limit

Implementations§

source§

impl<K, V, const VEC_LIMIT_UPPER: usize> SizedHashMap<K, V, DefaultHashBuilder, VEC_LIMIT_UPPER>

source

pub fn new() -> Self

Creates an empty HashMap.

The hash map is initially created with a capacity of 0, so it will not allocate until it is first inserted into.

§Examples
use halfbrown::HashMap;
let mut map: HashMap<&str, i32> = HashMap::new();
source

pub fn with_capacity(capacity: usize) -> Self

Creates an empty HashMap with the specified capacity.

The hash map will be able to hold at least capacity elements without reallocating. If capacity is 0, the hash map will not allocate.

§Examples
use halfbrown::HashMap;
let mut map: HashMap<&str, i32> = HashMap::with_capacity(10);
source

pub fn vec_with_capacity(capacity: usize) -> Self

Same as with capacity with the difference that it, despite of the requested size always returns a vector. This allows quicker generation when used in combination with insert_nocheck.

§Examples
use halfbrown::HashMap;
let mut map: HashMap<&str, i32> = HashMap::vec_with_capacity(128);
assert!(map.is_vec());
source§

impl<K, V, S, const VEC_LIMIT_UPPER: usize> SizedHashMap<K, V, S, VEC_LIMIT_UPPER>

source

pub fn with_hasher(hash_builder: S) -> Self

Creates an empty HashMap which will use the given hash builder to hash keys.

The created map has the default initial capacity.

Warning: hash_builder is normally randomly generated, and is designed to allow HashMaps to be resistant to attacks that cause many collisions and very poor performance. Setting it manually using this function can expose a DoS attack vector.

§Examples
use hashbrown::HashMap;
use hashbrown::hash_map::DefaultHashBuilder;

let s = DefaultHashBuilder::default();
let mut map = HashMap::with_hasher(s);
map.insert(1, 2);
source

pub fn with_capacity_and_hasher(capacity: usize, hash_builder: S) -> Self

Creates an empty HashMap with the specified capacity, using hash_builder to hash the keys.

The hash map will be able to hold at least capacity elements without reallocating. If capacity is 0, the hash map will not allocate.

Warning: hash_builder is normally randomly generated, and is designed to allow HashMaps to be resistant to attacks that cause many collisions and very poor performance. Setting it manually using this function can expose a DoS attack vector.

§Examples
use hashbrown::HashMap;
use hashbrown::hash_map::DefaultHashBuilder;

let s = DefaultHashBuilder::default();
let mut map = HashMap::with_capacity_and_hasher(10, s);
map.insert(1, 2);
source

pub fn hasher(&self) -> &S

Returns a reference to the map’s BuildHasher.

§Examples
use hashbrown::HashMap;
use hashbrown::hash_map::DefaultHashBuilder;

let hasher = DefaultHashBuilder::default();
let map: HashMap<i32, i32> = HashMap::with_hasher(hasher);
let hasher: &DefaultHashBuilder = map.hasher();
source

pub fn capacity(&self) -> usize

Returns the number of elements the map can hold without reallocating.

This number is a lower bound; the HashMap<K, V> might be able to hold more, but is guaranteed to be able to hold at least this many.

§Examples
use halfbrown::HashMap;
let map: HashMap<i32, i32> = HashMap::with_capacity(100);
assert!(map.capacity() >= 100);
source

pub fn keys(&self) -> Keys<'_, K, V>

An iterator visiting all keys in arbitrary order. The iterator element type is &'a K.

§Examples
use halfbrown::HashMap;

let mut map = HashMap::new();
map.insert("a", 1);
map.insert("b", 2);
map.insert("c", 3);

for key in map.keys() {
    println!("{}", key);
}
source

pub fn values(&self) -> Values<'_, K, V>

An iterator visiting all values in arbitrary order. The iterator element type is &'a V.

§Examples
use halfbrown::HashMap;

let mut map = HashMap::new();
map.insert("a", 1);
map.insert("b", 2);
map.insert("c", 3);

for val in map.values() {
    println!("{}", val);
}
source

pub fn values_mut(&mut self) -> ValuesMut<'_, K, V>

An iterator visiting all values mutably in arbitrary order. The iterator element type is &'a mut V.

§Examples
use halfbrown::HashMap;

let mut map = HashMap::new();

map.insert("a", 1);
map.insert("b", 2);
map.insert("c", 3);

for val in map.values_mut() {
    *val = *val + 10;
}

for val in map.values() {
    println!("{}", val);
}
source

pub fn iter(&self) -> Iter<'_, K, V>

An iterator visiting all key-value pairs in arbitrary order. The iterator element type is (&'a K, &'a V).

§Examples
use halfbrown::HashMap;

let mut map = HashMap::new();
map.insert("a", 1);
map.insert("b", 2);
map.insert("c", 3);

for (key, val) in map.iter() {
    println!("key: {} val: {}", key, val);
}
source

pub fn iter_mut(&mut self) -> IterMut<'_, K, V>

An iterator visiting all key-value pairs in arbitrary order, with mutable references to the values. The iterator element type is (&'a K, &'a mut V).

§Examples
use halfbrown::HashMap;

let mut map = HashMap::new();
map.insert("a", 1);
map.insert("b", 2);
map.insert("c", 3);

// Update all values
for (_, val) in map.iter_mut() {
    *val *= 2;
}

for (key, val) in &map {
    println!("key: {} val: {}", key, val);
}
source

pub fn len(&self) -> usize

Returns the number of elements in the map.

§Examples
use halfbrown::HashMap;

let mut a = HashMap::new();
assert_eq!(a.len(), 0);
a.insert(1, "a");
assert_eq!(a.len(), 1);
source

pub fn is_empty(&self) -> bool

Returns true if the map contains no elements.

§Examples
use halfbrown::HashMap;

let mut a = HashMap::new();
assert!(a.is_empty());
a.insert(1, "a");
assert!(!a.is_empty());
source

pub fn drain(&mut self) -> Drain<'_, K, V, VEC_LIMIT_UPPER>

Clears the map, returning all key-value pairs as an iterator. Keeps the allocated memory for reuse.

§Examples
use halfbrown::HashMap;

let mut a = HashMap::new();
a.insert(1, "a");
a.insert(2, "b");

for (k, v) in a.drain().take(1) {
    assert!(k == 1 || k == 2);
    assert!(v == "a" || v == "b");
}

assert!(a.is_empty());
source

pub fn clear(&mut self)

Clears the map, removing all key-value pairs. Keeps the allocated memory for reuse.

§Examples
use halfbrown::HashMap;

let mut a = HashMap::new();
a.insert(1, "a");
a.clear();
assert!(a.is_empty());
source§

impl<K, V, S, const VEC_LIMIT_UPPER: usize> SizedHashMap<K, V, S, VEC_LIMIT_UPPER>
where K: Eq + Hash, S: BuildHasher,

source

pub fn reserve(&mut self, additional: usize)

Reserves capacity for at least additional more elements to be inserted in the HashMap. The collection may reserve more space to avoid frequent reallocations.

§Panics

Panics if the new allocation size overflows usize.

§Examples
use halfbrown::HashMap;
let mut map: HashMap<&str, i32> = HashMap::new();
map.reserve(10);
source

pub fn shrink_to_fit(&mut self)

Shrinks the capacity of the map as much as possible. It will drop down as much as possible while maintaining the internal rules and possibly leaving some space in accordance with the resize policy.

§Examples
use halfbrown::HashMap;

let mut map: HashMap<i32, i32> = HashMap::with_capacity(100);
map.insert(1, 2);
map.insert(3, 4);
assert!(map.capacity() >= 100);
map.shrink_to_fit();
assert!(map.capacity() >= 2);
source

pub fn entry(&mut self, key: K) -> Entry<'_, K, V, VEC_LIMIT_UPPER, S>
where S: Default,

Gets the given key’s corresponding entry in the map for in-place manipulation.

§Examples
use halfbrown::HashMap;

let mut letters = HashMap::new();

for ch in "a short treatise on fungi".chars() {
    let counter = letters.entry(ch).or_insert(0);
    *counter += 1;
}

assert_eq!(letters[&'s'], 2);
assert_eq!(letters[&'t'], 3);
assert_eq!(letters[&'u'], 1);
assert_eq!(letters.get(&'y'), None);
source

pub fn get<Q>(&self, k: &Q) -> Option<&V>
where K: Borrow<Q>, Q: ?Sized + Hash + Eq,

Returns a reference to the value corresponding to the key.

The key may be any borrowed form of the map’s key type, but Hash and Eq on the borrowed form must match those for the key type.

§Examples
use halfbrown::HashMap;

let mut map = HashMap::new();
map.insert(1, "a");
assert_eq!(map.get(&1), Some(&"a"));
assert_eq!(map.get(&2), None);
source

pub fn contains_key<Q>(&self, k: &Q) -> bool
where K: Borrow<Q>, Q: Hash + Eq + ?Sized,

Returns true if the map contains a value for the specified key.

The key may be any borrowed form of the map’s key type, but Hash and Eq on the borrowed form must match those for the key type.

§Examples
use halfbrown::HashMap;

let mut map = HashMap::new();
map.insert(1, "a");
assert_eq!(map.contains_key(&1), true);
assert_eq!(map.contains_key(&2), false);
source

pub fn get_mut<Q>(&mut self, k: &Q) -> Option<&mut V>
where K: Borrow<Q>, Q: Hash + Eq + ?Sized,

Returns a mutable reference to the value corresponding to the key.

The key may be any borrowed form of the map’s key type, but Hash and Eq on the borrowed form must match those for the key type.

§Examples
use halfbrown::HashMap;

let mut map = HashMap::new();
map.insert(1, "a");
if let Some(x) = map.get_mut(&1) {
    *x = "b";
}
assert_eq!(map[&1], "b");
source

pub fn insert(&mut self, k: K, v: V) -> Option<V>
where S: Default,

Inserts a key-value pair into the map.

If the map did not have this key present, None is returned.

If the map did have this key present, the value is updated, and the old value is returned. The key is not updated, though; this matters for types that can be == without being identical. See the module-level documentation for more.

§Examples
use halfbrown::HashMap;

let mut map = HashMap::new();
assert_eq!(map.insert(37, "a"), None);
assert_eq!(map.is_empty(), false);

map.insert(37, "b");
assert_eq!(map.insert(37, "c"), Some("b"));
assert_eq!(map[&37], "c");
source

pub fn remove<Q>(&mut self, k: &Q) -> Option<V>
where K: Borrow<Q>, Q: Hash + Eq + ?Sized,

Removes a key from the map, returning the value at the key if the key was previously in the map.

The key may be any borrowed form of the map’s key type, but Hash and Eq on the borrowed form must match those for the key type.

§Examples
use halfbrown::HashMap;

let mut map = HashMap::new();
map.insert(1, "a");
assert_eq!(map.remove(&1), Some("a"));
assert_eq!(map.remove(&1), None);
source

pub fn remove_entry<Q>(&mut self, k: &Q) -> Option<(K, V)>
where K: Borrow<Q>, Q: Hash + Eq + ?Sized,

Removes a key from the map, returning the stored key and value if the key was previously in the map.

The key may be any borrowed form of the map’s key type, but Hash and Eq on the borrowed form must match those for the key type.

§Examples
use halfbrown::HashMap;

let mut map = HashMap::new();
map.insert(1, "a");
assert_eq!(map.remove_entry(&1), Some((1, "a")));
assert_eq!(map.remove(&1), None);
source

pub fn retain<F>(&mut self, f: F)
where F: FnMut(&K, &mut V) -> bool,

Retains only the elements specified by the predicate.

In other words, remove all pairs (k, v) such that f(&k, &mut v) returns false. The elements are visited in unsorted (and unspecified) order.

§Examples
use halfbrown::HashMap;

let mut map: HashMap<i32, i32> = (0..8).map(|x| (x, x*10)).collect();
map.retain(|&k, _| k % 2 == 0);
assert_eq!(map.len(), 4);
source

pub fn insert_nocheck(&mut self, k: K, v: V)
where S: Default,

Inserts element, this ignores check in the vector map if keys are present - it’s a fast way to build a new map when uniqueness is known ahead of time.

source

pub fn is_map(&self) -> bool

Checks if the current backend is a map, if so returns true.

source

pub fn is_vec(&self) -> bool

Checks if the current backend is a vector, if so returns true.

source§

impl<K, V, S, const VEC_LIMIT_UPPER: usize> SizedHashMap<K, V, S, VEC_LIMIT_UPPER>
where S: BuildHasher, K: Eq + Hash,

source

pub fn raw_entry_mut( &mut self ) -> RawEntryBuilderMut<'_, K, V, VEC_LIMIT_UPPER, S>
where S: Default,

Creates a raw entry builder for the HashMap.

Raw entries provide the lowest level of control for searching and manipulating a map. They must be manually initialized with a hash and then manually searched. After this, insertions into a vacant entry still require an owned key to be provided.

Raw entries are useful for such exotic situations as:

  • Hash memoization
  • Deferring the creation of an owned key until it is known to be required
  • Using a search key that doesn’t work with the Borrow trait
  • Using custom comparison logic without newtype wrappers

Because raw entries provide much more low-level control, it’s much easier to put the HashMap into an inconsistent state which, while memory-safe, will cause the map to produce seemingly random results. Higher-level and more foolproof APIs like entry should be preferred when possible.

In particular, the hash used to initialized the raw entry must still be consistent with the hash of the key that is ultimately stored in the entry. This is because implementations of HashMap may need to recompute hashes when resizing, at which point only the keys are available.

Raw entries give mutable access to the keys. This must not be used to modify how the key would compare or hash, as the map will not re-evaluate where the key should go, meaning the keys may become “lost” if their location does not reflect their state. For instance, if you change a key so that the map now contains keys which compare equal, search may start acting erratically, with two keys randomly masking each other. Implementations are free to assume this doesn’t happen (within the limits of memory-safety).

source

pub fn raw_entry(&self) -> RawEntryBuilder<'_, K, V, VEC_LIMIT_UPPER, S>

Creates a raw immutable entry builder for the HashMap.

Raw entries provide the lowest level of control for searching and manipulating a map. They must be manually initialized with a hash and then manually searched.

This is useful for

  • Hash memoization
  • Using a search key that doesn’t work with the Borrow trait
  • Using custom comparison logic without newtype wrappers

Unless you are in such a situation, higher-level and more foolproof APIs like get should be preferred.

Immutable raw entries have very limited use; you might instead want raw_entry_mut.

Trait Implementations§

source§

impl<K: Clone, V: Clone, S: Clone, const VEC_LIMIT_UPPER: usize> Clone for SizedHashMap<K, V, S, VEC_LIMIT_UPPER>

source§

fn clone(&self) -> SizedHashMap<K, V, S, VEC_LIMIT_UPPER>

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
source§

impl<K, V, S, const VEC_LIMIT_UPPER: usize> Debug for SizedHashMap<K, V, S, VEC_LIMIT_UPPER>
where K: Debug, V: Debug,

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
source§

impl<K, V, S: Default, const VEC_LIMIT_UPPER: usize> Default for SizedHashMap<K, V, S, VEC_LIMIT_UPPER>

source§

fn default() -> Self

Returns the “default value” for a type. Read more
source§

impl<K, V, S, const N: usize> FromIterator<(K, V)> for SizedHashMap<K, V, S, N>
where K: Eq + Hash, S: BuildHasher + Default,

source§

fn from_iter<T: IntoIterator<Item = (K, V)>>(iter: T) -> Self

Creates a value from an iterator. Read more
source§

impl<K, Q, V, S, const VEC_LIMIT_UPPER: usize> Index<&Q> for SizedHashMap<K, V, S, VEC_LIMIT_UPPER>
where K: Eq + Hash + Borrow<Q>, Q: Eq + Hash + ?Sized, S: BuildHasher,

source§

fn index(&self, key: &Q) -> &V

Returns a reference to the value corresponding to the supplied key.

§Panics

Panics if the key is not present in the HashMap.

§

type Output = V

The returned type after indexing.
source§

impl<'a, K, V, S, const N: usize> IntoIterator for &'a SizedHashMap<K, V, S, N>

§

type Item = (&'a K, &'a V)

The type of the elements being iterated over.
§

type IntoIter = Iter<'a, K, V>

Which kind of iterator are we turning this into?
source§

fn into_iter(self) -> Iter<'a, K, V>

Creates an iterator from a value. Read more
source§

impl<K, V, const N: usize, S> IntoIterator for SizedHashMap<K, V, S, N>

§

type Item = (K, V)

The type of the elements being iterated over.
§

type IntoIter = IntoIter<K, V, N>

Which kind of iterator are we turning this into?
source§

fn into_iter(self) -> IntoIter<K, V, N>

Creates an iterator from a value. Read more
source§

impl<K, V, S, S1, const VEC_LIMIT_UPPER1: usize, const VEC_LIMIT_UPPER2: usize> PartialEq<SizedHashMap<K, V, S1, VEC_LIMIT_UPPER1>> for SizedHashMap<K, V, S, VEC_LIMIT_UPPER2>
where K: Eq + Hash, V: PartialEq, S1: BuildHasher,

source§

fn eq(&self, other: &SizedHashMap<K, V, S1, VEC_LIMIT_UPPER1>) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<K, V, S, const VEC_LIMIT_UPPER: usize> Eq for SizedHashMap<K, V, S, VEC_LIMIT_UPPER>
where K: Eq + Hash, V: Eq, S: BuildHasher,

Auto Trait Implementations§

§

impl<K, V, S, const VEC_LIMIT_UPPER: usize> RefUnwindSafe for SizedHashMap<K, V, S, VEC_LIMIT_UPPER>

§

impl<K, V, S, const VEC_LIMIT_UPPER: usize> Send for SizedHashMap<K, V, S, VEC_LIMIT_UPPER>
where K: Send, S: Send, V: Send,

§

impl<K, V, S, const VEC_LIMIT_UPPER: usize> Sync for SizedHashMap<K, V, S, VEC_LIMIT_UPPER>
where K: Sync, S: Sync, V: Sync,

§

impl<K, V, S, const VEC_LIMIT_UPPER: usize> Unpin for SizedHashMap<K, V, S, VEC_LIMIT_UPPER>
where K: Unpin, S: Unpin, V: Unpin,

§

impl<K, V, S, const VEC_LIMIT_UPPER: usize> UnwindSafe for SizedHashMap<K, V, S, VEC_LIMIT_UPPER>
where K: UnwindSafe, S: UnwindSafe, V: UnwindSafe,

Blanket Implementations§

source§

impl<T> Any for T
where T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for T
where T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<Q, K> Equivalent<K> for Q
where Q: Eq + ?Sized, K: Borrow<Q> + ?Sized,

source§

fn equivalent(&self, key: &K) -> bool

Checks if this value is equivalent to the given key. Read more
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T, U> Into<U> for T
where U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T> ToOwned for T
where T: Clone,

§

type Owned = T

The resulting type after obtaining ownership.
source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.