gw_signal 0.1.10-alpha.1

Package with signal processing tools for graviational waves studies
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
/* --------------------------------------------------------------------------------------------- *
 * Libraries
 * --------------------------------------------------------------------------------------------- */

pub mod timeseries;
pub mod frequencyseries;
pub mod spectrogram;
pub mod filters;
pub mod windows;
//pub mod plot;


use std::{
	str::FromStr,
	string::ToString,
	//f64::consts::PI,
	fmt::Display,
	fs::File,
	io::BufReader,
	io::BufRead,
	io::Write};

use crate::{
	timeseries::TimeSeries,
	frequencyseries::FrequencySeries,
	spectrogram::Spectrogram,
	filters::Filter,
	windows::Window,
//	plot::{RealPlot, ComplexPlot}
};
use rustfft::FftPlanner;
use num::{Complex, complex::ComplexFloat};
use std::ops::{AddAssign, SubAssign, MulAssign, DivAssign};
//use more_asserts as ma;



/* --------------------------------------------------------------------------------------------- *
 * Constructors
 * --------------------------------------------------------------------------------------------- */
/// Spectral analysis methods
impl<D> TimeSeries<D> 
	where D: ComplexFloat + AddAssign + SubAssign + MulAssign + DivAssign,
{

	
	/// Compute the cross spectal density between two signals, using the Welch's method
	/// 
	/// # Example
	/// ```
	/// use gw_signal::{
	/// 	timeseries::*,
	/// 	frequencyseries::*,
	/// 	windows::*,
	/// };
	///
	/// // creates two white noise signals
	/// let window: Window = hann(1., 0.5, 1e3);
	/// let mut signal_1: TimeSeries = TimeSeries::white_noise(20000, 1e3, 0f64, 1f64);
	/// let mut signal_2: TimeSeries = signal_1.clone * 2.;
	///
	/// // compute the csd
	/// let csd: FrequencySeries = signal_1.csd(&signal_2, &window);
	/// 
	/// ```
	pub fn csd(
		&self,
		other: &TimeSeries<D>,
		window: &Window) -> FrequencySeries {
	
		assert_eq!(self.get_fs(), other.get_fs());
		// initialize fft
		let mut planner = FftPlanner::new();
		let fft = planner.plan_fft_forward(window.get_size());

		/*
		// compute the mean of each time series
		let mut self_clone = &mut self.clone();
		self_clone = self_clone - self.mean();
		let mut other_clone = &mut other.clone();
		other_clone = other_clone - other.mean();
		*/

		// initialize frequency series
		let mut temp_1: Vec<Complex<f64>>;
		let mut temp_2: Vec<Complex<f64>>;
		let f_max: f64 = self.get_fs() / 2.;
		let mut output: &mut FrequencySeries = &mut FrequencySeries::from_vector(
			f_max, vec![Complex{ re: 0.0f64, im: 0.0f64 }; window.get_size() / 2 + 1]);
		
		let nb_fft: usize = window.nb_fft(self.get_size());
		for i in 0..nb_fft {
			// compute windowed data
			temp_1 = window.get_windowed_data(self.get_data(), i);
			temp_2 = window.get_windowed_data(other.get_data(), i);
			// compute fft
			fft.process(&mut temp_1); fft.process(&mut temp_2);
			// compute product
			output = output + &*(
				&mut FrequencySeries::from_vector(
					f_max, 
					temp_1[0..(window.get_size() / 2 + 1)].to_vec().clone()
				).conj()
				* &FrequencySeries::from_vector(
					f_max,
					temp_2[0..(window.get_size() / 2 + 1)].to_vec().clone()
				)
			);
		}
		output = output / (f_max * window.get_norm_factor() * nb_fft as f64);
		output.clone()

	}
	/// Compute power spectral density using cross spectral density with itself
	/// 
	/// # Example
	/// ```
	/// use gw_signal::{
	/// 	timeseries::*,
	/// 	frequencyseries::*,
	/// 	windows::*,
	/// };
	///
	/// // creates two white noise signals
	/// let window: Window = hann(1., 0.5, 1e3);
	/// let mut signal_1: TimeSeries = TimeSeries::white_noise(2000000, 1e3, 0f64, 1f64);
	///
	/// // compute the csd
	/// let psd: FrequencySeries = signal_1.psd(&window);
	/// 
	/// ```
	pub fn psd(
		&self,
		window: &Window) -> FrequencySeries {

		// use csd
		let self_copy: &TimeSeries<D> = &(self.clone());
		self.csd(&self_copy, window)
	}
	
	/// Compute the amplitude spectral density of a signal. Uses the psd function
	/// 
	/// # Example
	/// ```
	/// use gw_signal::{
	/// 	timeseries::*,
	/// 	frequencyseries::*,
	/// 	windows::*,
	/// };
	///
	/// // creates two white noise signals
	/// let window: Window = hann(1., 0.5, 1e3);
	/// let mut signal_1: TimeSeries = TimeSeries::white_noise(2000000, 1e3, 0f64, 1f64);
	///
	/// // compute the csd
	/// let asd: FrequencySeries = signal_1.asd(&window);
	/// 
	/// ```
	pub fn asd(
		&self,
		window: &Window) -> FrequencySeries {
		
		self.psd(window).sqrt()
	}
	/// Compute the coherence between two signals.
	/// `\gamma_{1,2}(f) = \frac{|csd_{1,2}(f)|}{psd_1(f) \cdot psd_2(f)}`
	/// 
	/// # Example
	/// ```
	/// use gw_signal::{
	/// 	timeseries::*,
	/// 	frequencyseries::*,
	/// 	windows::*,
	/// };
	///
	/// // creates two white noise signals
	/// let window: Window = hann(1., 0.5, 1e3);
	/// let mut signal_1: TimeSeries = TimeSeries::white_noise(2000000, 1e3, 0f64, 1f64);
	/// let mut signal_2: TimeSeries = signal_1.clone() * 2.;
	///
	/// // compute the csd
	/// let coherence: FrequencySeries = signal_1.coherence(&signal_2, &window);
	/// 
	/// ```
	pub fn coherence(
		&self,
		other: &TimeSeries<D>,
		window: &Window) -> FrequencySeries {

		let psd1: FrequencySeries = self.clone().psd(window);
		let psd2: FrequencySeries = other.clone().psd(window);
		let mut csd: FrequencySeries = self.csd(other, window).abs2();
		((&mut csd / &psd1) / &psd2).clone()
	}

	/// Compute the transfer functions between two signals.
	/// `\TF_{1,2}(f) = \frac{csd_{1,2}(f)}{psd_1(f)}`
	/// 
	/// # Example
	/// ```
	/// use gw_signal::{
	/// 	timeseries::*,
	/// 	frequencyseries::*,
	/// 	windows::*,
	/// };
	///
	/// // creates two white noise signals
	/// let window: Window = hann(1., 0.5, 1e3);
	/// let mut signal_1: TimeSeries = TimeSeries::white_noise(2000000, 1e3, 0f64, 1f64);
	/// let mut signal_2: TimeSeries = signal_1.clone() * 2.;
	///
	/// // compute the csd
	/// let transfer_function: FrequencySeries = signal_1.transfer_function(&signal_2, &window);
	/// 
	/// ```
	pub fn transfer_function(
		&self,
		other: &TimeSeries<D>,
		window: &Window) -> FrequencySeries {

		let psd: FrequencySeries = self.clone().psd(window);
		let mut csd: FrequencySeries = self.csd(other, window);
		(&mut csd / &psd).clone()
	}

	/* ----------------------------------------------------------------------------------------- *
	 * compute spectrogram
	 * ----------------------------------------------------------------------------------------- */
	/// Compute the cross spectal density between two signals, using the Welch's method
	/// 
	/// # Example
	/// ```
	/// use gw_signal::{
	/// 	timeseries::*,
	/// 	frequencyseries::*,
	/// 	windows::*,
	/// };
	///
	/// // creates two white noise signals
	/// let window: Window = hann(1., 0.5, 1e3);
	/// let mut signal_1: TimeSeries = TimeSeries::white_noise(2000000, 1e3, 0f64, 1f64);
	/// let mut signal_2: TimeSeries = signal_1.clone() * 2.;
	///
	/// // compute the csd
	/// let csd: Spectrogram = signal_1.time_csd(&signal_2, &window, 10.);
	/// 
	/// ```
	pub fn time_csd(
		&self,
		other: &TimeSeries<D>,
		window: &Window,
		nb_fft: usize) -> Spectrogram {

		let step: usize = window.get_size() - window.get_overlap();
		let f_max: f64 = self.get_fs() / 2.;
		// check if the number of fft is over 1 and below the maximum number of fft
		assert!(nb_fft > 0);
		assert!(nb_fft <= window.nb_fft(self.get_size()));
		assert_eq!(self.get_fs(), other.get_fs());

		// initialize fft
		let mut planner = FftPlanner::new();
		let fft = planner.plan_fft_forward(window.get_size());

		/*
		// clone the time series and subtract their mean
		let mut self_clone = &mut self.clone();
		self_clone = self_clone - self.mean();
		let mut other_clone = &mut other.clone();
		other_clone = other_clone - other.mean();
		*/
		// compute all frequency series and put them into a vector
		let mut temp_1: Vec<Complex<f64>>;
		let mut temp_2: Vec<Complex<f64>>;

		let mut temp_series: &mut FrequencySeries = &mut FrequencySeries::from_vector(
			f_max, vec![Complex{ re: 0.0f64, im: 0.0f64 }; window.get_size() / 2 + 1]);
		let mut series_vec: Vec<FrequencySeries> = Vec::new();

		for i in 0..window.nb_fft(self.get_size()) {
			temp_series.set_to_zero();
			// compute windowed data
			temp_1 = window.get_windowed_data(self.get_data(), i);
			temp_2 = window.get_windowed_data(other.get_data(), i);
			// compute fft
			fft.process(&mut temp_1); fft.process(&mut temp_2);
			// compute product and add result into the frequency series vector
			temp_series = temp_series +
				&*( &mut FrequencySeries::from_vector(
					f_max, 
					temp_1[0..(window.get_size() / 2 + 1)].to_vec().clone()
				).conj()
				* &FrequencySeries::from_vector(
					f_max,
					temp_2[0..(window.get_size() / 2 + 1)].to_vec().clone()
				) / (f_max * window.get_norm_factor() * nb_fft as f64) );

			series_vec.push(temp_series.clone());

		}

		
		// computes first value and push it into the output vector
		let mut one_series: &mut FrequencySeries = &mut FrequencySeries::from_vector(
			f_max, vec![Complex{ re: 0.0f64, im: 0.0f64 }; window.get_size() / 2 + 1]);
		for i in 0..nb_fft {
			one_series = one_series + &series_vec[i];
		}
		
		// initialize output data vector
		let mut output: Vec<Vec<Complex<f64>>> = Vec::new();
		output.push( one_series.get_data() );

		// roll over the rest of the time series
		for i in nb_fft..window.nb_fft(self.get_size()) {
			one_series = one_series + &series_vec[i];
			one_series = one_series - &series_vec[i-nb_fft];
			output.push( one_series.get_data() );
		}
		
		Spectrogram::from_vector(
			f_max,
			((nb_fft - 1) * step + window.get_size()) as f64 / self.get_fs(),
			step as f64 / self.get_fs(),
			output)
	}
	/// Compute power spectral density using cross spectral density with itself
	/// 
	/// # Example
	/// ```
	/// use gw_signal::{
	/// 	timeseries::*,
	/// 	frequencyseries::*,
	/// 	windows::*,
	/// };
	///
	/// // creates two white noise signals
	/// let window: Window = hann(1., 0.5, 1e3);
	/// let mut signal_1: TimeSeries = TimeSeries::white_noise(2000000, 1e3, 0f64, 1f64);
	///
	/// // compute the csd
	/// let psd: FrequencySeries = signal_1.time_psd(&window, 10);
	/// 
	/// ```
	pub fn time_psd(
		&self,
		window: &Window,
		nb_fft: usize) -> Spectrogram {

		// use csd
		let self_copy: &TimeSeries<D> = &(self.clone());
		self.time_csd(&self_copy, window, nb_fft)
	}
	/// Compute the amplitude spectral density of a signal. Uses the psd function
	/// 
	/// # Example
	/// ```
	/// use gw_signal::{
	/// 	timeseries::*,
	/// 	frequencyseries::*,
	/// 	windows::*,
	/// };
	///
	/// // creates two white noise signals
	/// let window: Window = hann(1., 0.5, 1e3);
	/// let mut signal_1: TimeSeries = TimeSeries::white_noise(2000000, 1e3, 0f64, 1f64);
	///
	/// // compute the csd
	/// let asd: FrequencySeries = signal_1.time_asd(&window, 10);
	/// 
	/// ```
	pub fn time_asd(
		&self,
		window: &Window,
		nb_fft: usize) -> Spectrogram {
		
		self.time_psd(window, nb_fft).sqrt()
	}
	/// Compute the coherence between two signals.
	/// `\gamma_{1,2}(f) = \frac{|csd_{1,2}(f)|}{psd_1(f) \cdot psd_2(f)}`
	/// 
	/// # Example
	/// ```
	/// use gw_signal::{
	/// 	timeseries::*,
	/// 	frequencyseries::*,
	/// 	windows::*,
	/// };
	///
	/// // creates two white noise signals
	/// let window: Window = hann(1., 0.5, 1e3);
	/// let mut signal_1: TimeSeries = TimeSeries::white_noise(2000000, 1e3, 0f64, 1f64);
	/// let mut signal_2: TimeSeries = signal_1.clone() * 2.;
	///
	/// // compute the csd
	/// let coherence: FrequencySeries = signal_1.time_cohe(&signal_2, &window, 10);
	/// 
	/// ```
	pub fn time_cohe(
		&self,
		other: &TimeSeries<D>,
		window: &Window,
		nb_fft: usize) -> Spectrogram {

		let psd1: Spectrogram = self.clone().time_psd(window, nb_fft);
		let psd2: Spectrogram = other.clone().time_psd(window, nb_fft);
		let mut csd: Spectrogram = self.time_csd(other, window, nb_fft).abs2();
		((&mut csd / &psd1) / &psd2).clone()
	}
	/// Compute the transfer functions between two signals.
	/// `\TF_{1,2}(f) = \frac{csd_{1,2}(f)}{psd_1(f)}`
	/// 
	/// # Example
	/// ```
	/// use gw_signal::{
	/// 	timeseries::*,
	/// 	frequencyseries::*,
	/// 	windows::*,
	/// };
	///
	/// // creates two white noise signals
	/// let window: Window = hann(1., 0.5, 1e3);
	/// let mut signal_1: TimeSeries = TimeSeries::white_noise(2000000, 1e3, 0f64, 1f64);
	/// let mut signal_2: TimeSeries = signal_1.clone() * 2.;
	///
	/// // compute the csd
	/// let transfer_function: FrequencySeries = signal_1.time_tf(&signal_2, &window 10);
	/// 
	/// ```
	pub fn time_tf(
		&self,
		other: &TimeSeries<D>,
		window: &Window,
		nb_fft: usize) -> Spectrogram {

		let psd: Spectrogram = self.clone().time_psd(window, nb_fft);
		let mut csd: Spectrogram = self.time_csd(other, window, nb_fft);
		(&mut csd / &psd).clone()
	}
}

/* --------------------------------------------------------------------------------------------- */

/// Implement signal filtering
impl<D> TimeSeries<D> 
	where D: ComplexFloat + AddAssign + SubAssign + MulAssign + DivAssign,
{

	/// The following method apply an IIR filter to a time series
	/// modify the original time series object.
	/// # Example	
	/// ```
	/// use gw_signal::{
	/// 	timeseries::*,
	/// 	filter::*,
	/// };
	///
	/// // creates two white noise signals
	/// let fs: f64 = 1e3;
	/// let mut signal_1: TimeSeries = TimeSeries::white_noise(20000, f64, 1.);
	/// 
	/// // generates an 8th butterworth lowpass filter at 10 Hz
	/// let butter: Filter::butterworth(8, BType::LowType(10.), fs);
	/// 
	/// // apply the filter to the signal
	/// let mut signal_2: TimeSeries = signal_1.apply_filter(butter);
	///
	/// ```
	pub fn apply_filter(&mut self, input_filter: &Filter) {
		
		assert!((1. - self.get_fs() / input_filter.get_fs()).abs() < 1e-10);
		let mut flt: Filter = input_filter.clone();
		// warp frequencies
		flt.adapt_frequencies(true);
		// compute bilinear transform of the filter, the filter is now in the z-space
		flt.bilinear_transform();
		// compute the polynomial coefficiants of the z-transform of the filter
		let (mut b, mut a): (Vec<f64>, Vec<f64>) = flt.polezero_to_coef();

		// complete a or b with 0. so that the two vectors have the same size
		if a.len() < b.len() {
			a.append(&mut vec![0.; b.len()-a.len()]);
		}
		else if a.len() > b.len() {
			b.append(&mut vec![0.; a.len()-b.len()]);
		}
		// number of pole and zeros
		let n: usize = a.len();

		// apply filter to the data vector
		let mut x: Vec<D> = vec![self[0]; n-1];
		x.append(&mut self.get_data());
		let mut y: Vec<D> = x.clone();

		for i in 0..self.get_size() {
			let mut temp_y: D = D::zero();
			for j in 0..b.len() {
				temp_y += x[i + b.len()-1 - j] * D::from(b[j]).unwrap();
			}
			for j in 1..a.len() {
				temp_y -= y[i + a.len()-1 - j] * D::from(a[j]).unwrap();
			}
			temp_y /= D::from(a[0]).unwrap();
			self[i] = temp_y;
			y[i+a.len()-1] = temp_y;
		}

	}
}


/* --------------------------------------------------------------------------------------------- *
 * SeriesIO trait 
 * --------------------------------------------------------------------------------------------- */

/// This trait is for dedug purpose only.
/// It provides a function to print some samples of the time/frequency series and to print it into a csv file.
pub trait SeriesIO {
	/// 
	/// # Example	
	/// ```
	/// use gw_signal::{
	/// 	timeseries::*,
	/// 	Series_IO,
	/// };
	///
	/// // creates a white noise signals
	/// let fs: f64 = 1e3;
	/// let mut signal: TimeSeries = TimeSeries::white_noise(20000, fs, 1.);
	/// 
	/// // print the 10 first values of the time series
	/// signal.print(0, 10);
	///
	/// ```
    fn print(&self, n1: usize, n2: usize);

	/// # Example	
	/// ```
	/// use gw_signal::{
	/// 	timeseries::*,
	/// 	filter::*,
	/// };
	/// 
	/// // creates a white noise signals
	/// let fs: f64 = 1e3;
	/// let mut signal: TimeSeries = TimeSeries::white_noise(20000, fs, 1.);
	/// 
	/// // Write csv files
	/// signal.write_csv("TimeSeries.csv");
	/// ```
	fn write_csv(&self, file_name: &str);

	/// # Example	
	/// ```
	/// use gw_signal::{
	/// 	timeseries::*,
	/// 	filter::*,
	/// };
	/// 
	/// // Read time series from csv files
	/// let mut signal: TimeSeries<f64> = TimeSeries::<f64>::read_csv("TimeSeries.csv");
	/// ```
	fn read_csv(file_name: &str) -> Self;
}


impl<D: ComplexFloat + ToString + FromStr + Display> SeriesIO for TimeSeries<D> {
    
	fn print(&self, n1: usize, n2: usize) {
		let mut time: f64;         
		for i in n1..n2 {
            // compute time
            time = self.get_t0() + (i as f64) / self.get_fs();
            println!("t = {:.3} s: {:.6}", time, self[i]);
        }
    }

	fn write_csv(&self, file_name: &str) {
		let mut w = File::create(file_name).unwrap();
		writeln!(&mut w, "time,value").unwrap();
		let mut time: f64 = self.get_t0();
        for value in self.get_data().iter() {
            // compute time
            time += 1f64 / self.get_fs();
            writeln!(&mut w, "{},{}", time, value.to_string()).unwrap();
        }
	}

	fn read_csv(file_name: &str) -> Self {
		println!("Read file: {}", file_name);
		// read file
		let r = File::open(file_name).expect("The file is not found!");
		let buffer = BufReader::new(r);
		// initialize time and data vectors
		let (mut time, mut data): (Vec<f64>, Vec<D>) = (Vec::new(), Vec::new());
		// make iterator over lines and read file header
		let mut line_iter = buffer.lines();
		// read line, split it over the "," character and make a vector of strings
		let mut line_str = line_iter.next().unwrap().unwrap();
		let mut line_vec: Vec<&str> = line_str.split(",").collect();
		assert_eq!(line_vec[0], "time");
		for line in line_iter {
			line_str = line.expect("Unable to read line");
			line_vec = line_str.split(",").collect();

			time.push(f64::from_str(&line_vec[0]).expect("Unable to read time value"));
			let read_data = D::from_str(&line_vec[1]);
			match read_data {
				Ok(x) => data.push(x),
				Err(_) => panic!("Unable to read data value"),
			}
		}
		let frequency: f64 = (time.len()-1) as f64 / (time[time.len()-1] - time[0]);
		TimeSeries::from_vector(frequency, time[0], data)
	}

}



impl SeriesIO for FrequencySeries {
    
	fn print(&self, n1: usize, n2: usize) {
        let mut freq: f64;
        for i in n1..n2 {
            // compute time
            freq = self.get_f_max() * (i as f64) / ((self.get_size()-1) as f64);
            println!("f = {:.3} Hz: {:.6} + {:.6}i", freq, self[i].re, self[i].im);
        }
    }
	
	fn write_csv(&self, file_name: &str) {
		let mut w = File::create(file_name).unwrap();
		writeln!(&mut w, "frequency,value").unwrap();
		let mut freq: f64 = 0f64;
        for value in self.get_data().iter() {
            // compute time
            writeln!(&mut w, "{},{}", freq, value.to_string()).unwrap();
            freq += self.get_f_max() / ((self.get_size()-1) as f64);
        }
	}

	fn read_csv(file_name: &str) -> Self {
		println!("Read file: {}", file_name);
		// read file
		let r = File::open(file_name).expect("The file is not found!");
		let buffer = BufReader::new(r);
		// initialize time and data vectors
		let (mut freq, mut data): (Vec<f64>, Vec<Complex<f64>>) = (Vec::new(), Vec::new());
		// make iterator over lines and read file header
		let mut line_iter = buffer.lines();
		// read line, split it over the "," character and make a vector of strings
		let mut line_str = line_iter.next().unwrap().unwrap();
		let mut line_vec: Vec<&str> = line_str.split(",").collect();
		assert_eq!(line_vec[0], "frequency");
		for line in line_iter {
			line_str = line.expect("Unable to read line");
			line_vec = line_str.split(",").collect();
			freq.push(f64::from_str(&line_vec[0]).expect("Unable to read frequency value"));
			let read_data = Complex::from_str(&line_vec[1]);
			match read_data {
				Ok(x) => data.push(x),
				Err(_) => panic!("Unable to read data value"),
			}
		}
		FrequencySeries::from_vector(freq[freq.len()-1], data)
	}
}

impl SeriesIO for Spectrogram {
	
	fn print(&self, n1: usize, n2: usize){
		println!("Print the first frequency series of the spectrogram");
		let frequency_series = &self[0];
		let mut freq: f64;
		for i in n1..n2 {
            // compute time
            freq = self.get_f_max() * (i as f64) / ((self.get_size().1-1) as f64);
            println!("f = {:.3} Hz: {:.6} + {:.6}i",
				freq, frequency_series[i].re, frequency_series[i].im);
        }
	}

	fn write_csv(&self, file_name: &str) {
		let (_size_time, size_freq) = self.get_size();
		// create file
		let mut w = File::create(file_name).unwrap();
		// write first line with frequency values
		let mut line = String::from("time\\frequency");
		let mut freq: f64;
		for i in 0..size_freq {
			// compute frequency
			freq = self.get_f_max() * (i as f64) / (size_freq - 1) as f64;
			line.push_str(",");
			line.push_str(&freq.to_string());
		}
		//line.push_str("\n");
		// write firsst line
		writeln!(&mut w, "{}", line).unwrap();
		// write data vector
		let mut time: f64 = self.get_t0();
        for frequency_series in self.get_data().iter() {
            // compute time
			line = time.to_string();
			for value in frequency_series.iter() {
				line.push_str(",");
				line.push_str(&value.to_string());
			}
			//line.push_str("\n");
            writeln!(&mut w, "{}", line).unwrap();
            time += self.get_dt();
        }
	}

	fn read_csv(file_name: &str) -> Self {
		println!("Read file: {}", file_name);
		// read file
		let r = File::open(file_name).expect("The file is not found!");
		let buffer = BufReader::new(r);
		
		// make iterator over lines and read file header
		let mut line_iter = buffer.lines();
		
		// read line, split it over the "," character and make a vector of strings
		let mut line_str = line_iter.next().unwrap().unwrap();
		let mut line_vec: Vec<&str> = line_str.split(",").collect();
		
		// read last value of the frequency vector
		let f_max: f64 = f64::from_str(line_vec[line_vec.len() - 1])
			.expect("Unable to read maximum frequency");
		// initialize data vector and time vector
		let mut time: Vec<f64> = Vec::new();
		let mut data: Vec<Vec<Complex<f64>>> = Vec::new();
		let mut is_time: bool;

		// fill the vector
		for line in line_iter {
			line_str = line.expect("Unable to read line");
			line_vec = line_str.split(",").collect();
			is_time = true;
			let mut line_vector: Vec<Complex<f64>> = Vec::new();
			for str_value in line_vec.iter() {
				if is_time {
					time.push(f64::from_str(str_value).expect("unable to read time value"));
				} else {
					let read_data = Complex::from_str(str_value);
					match read_data {
						Ok(x) => line_vector.push(x),
						Err(_) => panic!("Unable to read data value"),
					}
				}
				is_time = false;
			}
			data.push(line_vector);
		}
		Spectrogram::from_vector(f_max, time[0], time[1]-time[0], data)
	}
}


/* --------------------------------------------------------------------------------------------- *
 * Plot time series
 * --------------------------------------------------------------------------------------------- */
/*
impl RealPlot {
	/// Add one time series to the plot
	pub fn add_timeseries<D, F>(&mut self, series: &TimeSeries<D>) 
		where D: ComplexFloat<Real = F>, F: Float,
	{
		
		// build time axis
		let mut time: Vec<f64> = Vec::new();
		for i in 0..series.get_size() {
			time.push(series.get_t0() + (i as f64) / series.get_fs());
		}
		self.add_data_vector(time, series.to_f64().get_data());
	}

	pub fn add_frequencyseries(&mut self, series: &FrequencySeries) {
		
		// build time axis
		let mut time: Vec<f64> = Vec::new();
		let mut real_data: Vec<f64> = Vec::new();
		for i in 1..series.get_size() {
			time.push((i as f64) / ((series.get_size() - 1) as f64) * series.get_f_max());
			real_data.push(series[i].re);
		}
		self.add_data_vector(time, real_data);
		self.set_x_scale_to_log(true);
	}

}
impl ComplexPlot {

	/// Add one time series to the plot
	pub fn add_timeseries<D, F>(&mut self, series: &TimeSeries<D>) 
		where D: ComplexFloat<Real = F>, F: Float,
	{
		
		// build time axis
		let mut time: Vec<f64> = Vec::new();
		for i in 0..series.get_size() {
			time.push(series.get_t0() + (i as f64) / series.get_fs());
		}
		self.add_data_vector(time, series.to_c64().get_data());
	}

	pub fn add_frequencyseries(&mut self, series: &FrequencySeries) {
		
		// build time axis
		let mut time: Vec<f64> = Vec::new();
		let mut data: Vec<Complex<f64>> = Vec::new();
		for i in 1..series.get_size() {
			time.push((i as f64) / ((series.get_size() - 1) as f64) * series.get_f_max());
			data.push(series[i]);
		}
		self.add_data_vector(time, data);
		self.set_x_scale_to_log(true);
		self.set_y_scale_to_log(true);
	}

}
*/
/* --------------------------------------------------------------------------------------------- *
 * Filter methods
 * --------------------------------------------------------------------------------------------- */

/// 
impl Filter {
	/// Compute frequency response of the filter
	pub fn frequency_response(&self, size: usize) -> FrequencySeries {

		// warp frequencies
		let mut clone_filter = self.clone();
		clone_filter.adapt_frequencies(false);
		// initialize frequency series
		let mut response: FrequencySeries = FrequencySeries::from_vector(
			clone_filter.get_fs()/2., vec![Complex{re: clone_filter.get_gain(), im: 0.}; size]);
		let mut frequency: f64;

		for i in 0..size {
			frequency = clone_filter.get_fs() / 2. * (i as f64) / ((size-1) as f64);

			// apply zeros
			for z in clone_filter.get_zeros().iter() {
				response[i] *= Complex{re: 0., im: frequency} - z
			}
			// apply poles
			for p in clone_filter.get_poles().iter() {
				response[i] /= Complex{re: 0., im: frequency} - p
			}
		}
		response
	}

}