1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
use google_cloud_gax::retry::{invoke_fn, TryAs};
use google_cloud_googleapis::spanner::v1::{commit_request, transaction_options, Mutation, TransactionOptions};
use crate::apiv1::conn_pool::{ConnectionManager, SPANNER};
use crate::session::{ManagedSession, SessionConfig, SessionError, SessionManager};
use crate::statement::Statement;
use crate::transaction::{CallOptions, QueryOptions};
use crate::transaction_ro::{BatchReadOnlyTransaction, ReadOnlyTransaction};
use crate::transaction_rw::{commit, CommitOptions, ReadWriteTransaction};
use crate::value::{Timestamp, TimestampBound};
use crate::retry::TransactionRetrySetting;
use google_cloud_gax::cancel::CancellationToken;
use google_cloud_gax::conn::Environment;
use google_cloud_gax::grpc::{Code, Status};
use std::future::Future;
use std::pin::Pin;
use std::sync::Arc;
#[derive(Clone, Default)]
pub struct PartitionedUpdateOption {
pub begin_options: CallOptions,
pub query_options: Option<QueryOptions>,
}
#[derive(Clone)]
pub struct ReadOnlyTransactionOption {
pub timestamp_bound: TimestampBound,
pub call_options: CallOptions,
}
impl Default for ReadOnlyTransactionOption {
fn default() -> Self {
ReadOnlyTransactionOption {
timestamp_bound: TimestampBound::strong_read(),
call_options: CallOptions::default(),
}
}
}
#[derive(Clone, Default)]
pub struct ReadWriteTransactionOption {
pub begin_options: CallOptions,
pub commit_options: CommitOptions,
}
#[derive(Clone, Debug)]
pub struct ChannelConfig {
/// num_channels is the number of gRPC channels.
pub num_channels: usize,
}
impl Default for ChannelConfig {
fn default() -> Self {
ChannelConfig { num_channels: 4 }
}
}
/// ClientConfig has configurations for the client.
#[derive(Debug)]
pub struct ClientConfig {
/// SessionPoolConfig is the configuration for session pool.
pub session_config: SessionConfig,
/// ChannelConfig is the configuration for gRPC connection.
pub channel_config: ChannelConfig,
/// Overriding service endpoint
pub endpoint: String,
}
impl Default for ClientConfig {
fn default() -> Self {
let mut config = ClientConfig {
channel_config: Default::default(),
session_config: Default::default(),
endpoint: SPANNER.to_string(),
};
config.session_config.min_opened = config.channel_config.num_channels * 4;
config.session_config.max_opened = config.channel_config.num_channels * 100;
config
}
}
#[derive(thiserror::Error, Debug)]
pub enum InitializationError {
#[error(transparent)]
FailedToCreateSessionPool(#[from] Status),
#[error(transparent)]
FailedToCreateChannelPool(#[from] google_cloud_gax::conn::Error),
#[error(transparent)]
Auth(#[from] google_cloud_auth::error::Error),
#[error("invalid config: {0}")]
InvalidConfig(String),
}
#[derive(thiserror::Error, Debug)]
pub enum TxError {
#[error(transparent)]
GRPC(#[from] Status),
#[error(transparent)]
InvalidSession(#[from] SessionError),
}
impl TryAs<Status> for TxError {
fn try_as(&self) -> Option<&Status> {
match self {
TxError::GRPC(s) => Some(s),
_ => None,
}
}
}
#[derive(thiserror::Error, Debug)]
pub enum RunInTxError {
#[error(transparent)]
GRPC(#[from] Status),
#[error(transparent)]
InvalidSession(#[from] SessionError),
#[error(transparent)]
ParseError(#[from] crate::row::Error),
#[error(transparent)]
Any(#[from] anyhow::Error),
}
impl From<TxError> for RunInTxError {
fn from(err: TxError) -> Self {
match err {
TxError::GRPC(err) => RunInTxError::GRPC(err),
TxError::InvalidSession(err) => RunInTxError::InvalidSession(err),
}
}
}
impl TryAs<Status> for RunInTxError {
fn try_as(&self) -> Option<&Status> {
match self {
RunInTxError::GRPC(e) => Some(e),
_ => None,
}
}
}
/// Client is a client for reading and writing data to a Cloud Spanner database.
/// A client is safe to use concurrently, except for its Close method.
pub struct Client {
sessions: Arc<SessionManager>,
}
impl Clone for Client {
fn clone(&self) -> Self {
Client {
sessions: Arc::clone(&self.sessions),
}
}
}
impl Client {
/// new creates a client to a database. A valid database name has
/// the form projects/PROJECT_ID/instances/INSTANCE_ID/databases/DATABASE_ID.
pub async fn new(database: impl Into<String>) -> Result<Self, InitializationError> {
Client::new_with_config(database, Default::default()).await
}
/// new creates a client to a database. A valid database name has
/// the form projects/PROJECT_ID/instances/INSTANCE_ID/databases/DATABASE_ID.
pub async fn new_with_config(
database: impl Into<String>,
config: ClientConfig,
) -> Result<Self, InitializationError> {
if config.session_config.max_opened > config.channel_config.num_channels * 100 {
return Err(InitializationError::InvalidConfig(format!(
"max session size is {} because max session size is 100 per gRPC connection",
config.channel_config.num_channels * 100
)));
}
let environment = match std::env::var("SPANNER_EMULATOR_HOST") {
Ok(host) => Environment::Emulator(host),
Err(_) => Environment::GoogleCloud(google_cloud_auth::project().await?),
};
let pool_size = config.channel_config.num_channels as usize;
let conn_pool = ConnectionManager::new(pool_size, &environment, config.endpoint.as_str()).await?;
let session_manager = SessionManager::new(database, conn_pool, config.session_config).await?;
Ok(Client {
sessions: Arc::new(session_manager),
})
}
/// Close closes the client.
pub async fn close(&self) {
self.sessions.close().await;
}
/// single provides a read-only snapshot transaction optimized for the case
/// where only a single read or query is needed. This is more efficient than
/// using read_only_transaction for a single read or query.
/// ```
/// use google_cloud_spanner::key::Key;
/// use google_cloud_spanner::statement::ToKind;
/// use google_cloud_spanner::client::Client;
///
/// #[tokio::main]
/// async fn main() -> Result<(), anyhow::Error> {
/// const DATABASE: &str = "projects/local-project/instances/test-instance/databases/local-database";
/// let client = Client::new(DATABASE).await?;
///
/// let mut tx = client.single().await?;
/// let iter1 = tx.read("Guild",&["GuildID", "OwnerUserID"], vec![
/// Key::new(&"pk1"),
/// Key::new(&"pk2")
/// ]).await?;
/// Ok(())
/// }
/// ```
pub async fn single(&self) -> Result<ReadOnlyTransaction, TxError> {
self.single_with_timestamp_bound(TimestampBound::strong_read()).await
}
/// single provides a read-only snapshot transaction optimized for the case
/// where only a single read or query is needed. This is more efficient than
/// using read_only_transaction for a single read or query.
pub async fn single_with_timestamp_bound(&self, tb: TimestampBound) -> Result<ReadOnlyTransaction, TxError> {
let session = self.get_session().await?;
let result = ReadOnlyTransaction::single(session, tb).await?;
Ok(result)
}
/// read_only_transaction returns a ReadOnlyTransaction that can be used for
/// multiple reads from the database.
///
/// ```ignore
/// use google_cloud_spanner::statement::Statement;
/// use google_cloud_spanner::key::Key;
///
/// let tx = client.read_only_transaction().await?;
///
/// let mut stmt = Statement::new("SELECT * , \
/// ARRAY (SELECT AS STRUCT * FROM UserItem WHERE UserId = @Param1 ) AS UserItem, \
/// ARRAY (SELECT AS STRUCT * FROM UserCharacter WHERE UserId = @Param1 ) AS UserCharacter \
/// FROM User \
/// WHERE UserId = @Param1");
///
/// stmt.add_param("Param1", user_id);
/// let mut reader = tx.query(stmt).await?;
/// while let Some(row) = reader.next().await? {
/// let user_id= row.column_by_name::<String>("UserId")?;
/// let user_items= row.column_by_name::<Vec<model::UserItem>>("UserItem")?;
/// let user_characters = row.column_by_name::<Vec<model::UserCharacter>>("UserCharacter")?;
/// data.push(user_id);
/// }
///
/// let mut reader2 = tx.read("User", &["UserId"], vec![
/// Key::new(&"user-1"),
/// Key::new(&"user-2")
/// ]).await?;
pub async fn read_only_transaction(&self) -> Result<ReadOnlyTransaction, TxError> {
self.read_only_transaction_with_option(ReadOnlyTransactionOption::default())
.await
}
/// read_only_transaction returns a ReadOnlyTransaction that can be used for
/// multiple reads from the database.
pub async fn read_only_transaction_with_option(
&self,
options: ReadOnlyTransactionOption,
) -> Result<ReadOnlyTransaction, TxError> {
let session = self.get_session().await?;
let result = ReadOnlyTransaction::begin(session, options.timestamp_bound, options.call_options).await?;
Ok(result)
}
/// batch_read_only_transaction returns a BatchReadOnlyTransaction that can be used
/// for partitioned reads or queries from a snapshot of the database. This is
/// useful in batch processing pipelines where one wants to divide the work of
/// reading from the database across multiple machines.
pub async fn batch_read_only_transaction(&self) -> Result<BatchReadOnlyTransaction, TxError> {
self.batch_read_only_transaction_with_option(ReadOnlyTransactionOption::default())
.await
}
/// batch_read_only_transaction returns a BatchReadOnlyTransaction that can be used
/// for partitioned reads or queries from a snapshot of the database. This is
/// useful in batch processing pipelines where one wants to divide the work of
/// reading from the database across multiple machines.
pub async fn batch_read_only_transaction_with_option(
&self,
options: ReadOnlyTransactionOption,
) -> Result<BatchReadOnlyTransaction, TxError> {
let session = self.get_session().await?;
let result = BatchReadOnlyTransaction::begin(session, options.timestamp_bound, options.call_options).await?;
Ok(result)
}
/// partitioned_update executes a DML statement in parallel across the database,
/// using separate, internal transactions that commit independently. The DML
/// statement must be fully partitionable: it must be expressible as the union
/// of many statements each of which accesses only a single row of the table. The
/// statement should also be idempotent, because it may be applied more than once.
///
/// PartitionedUpdate returns an estimated count of the number of rows affected.
/// The actual number of affected rows may be greater than the estimate.
pub async fn partitioned_update(&self, stmt: Statement) -> Result<i64, TxError> {
self.partitioned_update_with_option(stmt, PartitionedUpdateOption::default())
.await
}
/// partitioned_update executes a DML statement in parallel across the database,
/// using separate, internal transactions that commit independently. The DML
/// statement must be fully partitionable: it must be expressible as the union
/// of many statements each of which accesses only a single row of the table. The
/// statement should also be idempotent, because it may be applied more than once.
///
/// PartitionedUpdate returns an estimated count of the number of rows affected.
/// The actual number of affected rows may be greater than the estimate.
pub async fn partitioned_update_with_option(
&self,
stmt: Statement,
options: PartitionedUpdateOption,
) -> Result<i64, TxError> {
let ro = TransactionRetrySetting::new(vec![Code::Aborted, Code::Internal]);
let session = Some(self.get_session().await?);
// reuse session
invoke_fn(
options.begin_options.cancel.clone(),
Some(ro),
|session| async {
let mut tx =
match ReadWriteTransaction::begin_partitioned_dml(session.unwrap(), options.begin_options.clone())
.await
{
Ok(tx) => tx,
Err(e) => return Err((TxError::GRPC(e.status), Some(e.session))),
};
let qo = match options.query_options.clone() {
Some(o) => o,
None => QueryOptions::default(),
};
tx.update_with_option(stmt.clone(), qo)
.await
.map_err(|e| (TxError::GRPC(e), tx.take_session()))
},
session,
)
.await
}
/// apply_at_least_once may attempt to apply mutations more than once; if
/// the mutations are not idempotent, this may lead to a failure being reported
/// when the mutation was applied more than once. For example, an insert may
/// fail with ALREADY_EXISTS even though the row did not exist before Apply was
/// called. For this reason, most users of the library will prefer not to use
/// this option. However, apply_at_least_once requires only a single RPC, whereas
/// apply's default replay protection may require an additional RPC. So this
/// method may be appropriate for latency sensitive and/or high throughput blind
/// writing.
pub async fn apply_at_least_once(&self, ms: Vec<Mutation>) -> Result<Option<Timestamp>, TxError> {
self.apply_at_least_once_with_option(ms, CommitOptions::default()).await
}
/// apply_at_least_once may attempt to apply mutations more than once; if
/// the mutations are not idempotent, this may lead to a failure being reported
/// when the mutation was applied more than once. For example, an insert may
/// fail with ALREADY_EXISTS even though the row did not exist before Apply was
/// called. For this reason, most users of the library will prefer not to use
/// this option. However, apply_at_least_once requires only a single RPC, whereas
/// apply's default replay protection may require an additional RPC. So this
/// method may be appropriate for latency sensitive and/or high throughput blind
/// writing.
pub async fn apply_at_least_once_with_option(
&self,
ms: Vec<Mutation>,
options: CommitOptions,
) -> Result<Option<Timestamp>, TxError> {
let ro = TransactionRetrySetting::default();
let mut session = self.get_session().await?;
invoke_fn(
options.call_options.cancel.clone(),
Some(ro),
|session| async {
let tx = commit_request::Transaction::SingleUseTransaction(TransactionOptions {
mode: Some(transaction_options::Mode::ReadWrite(transaction_options::ReadWrite {})),
});
match commit(session, ms.clone(), tx, options.clone()).await {
Ok(s) => Ok(s.commit_timestamp.map(|s| s.into())),
Err(e) => Err((TxError::GRPC(e), session)),
}
},
&mut session,
)
.await
}
/// Apply applies a list of mutations atomically to the database.
/// ```
/// use google_cloud_spanner::mutation::insert;
/// use google_cloud_spanner::mutation::delete;
/// use google_cloud_spanner::key::all_keys;
/// use google_cloud_spanner::statement::ToKind;
/// use google_cloud_spanner::client::Client;
/// use google_cloud_spanner::value::CommitTimestamp;
///
/// #[tokio::main]
/// async fn main() -> Result<(), anyhow::Error> {
/// const DATABASE: &str = "projects/local-project/instances/test-instance/databases/local-database";
/// let client = Client::new(DATABASE).await?;
/// let m1 = delete("Guild", all_keys());
/// let m2 = insert("Guild", &["GuildID", "OwnerUserID", "UpdatedAt"], &[&"1", &"2", &CommitTimestamp::new()]);
/// let commit_timestamp = client.apply(vec![m1,m2]).await?;
/// Ok(())
/// }
/// ```
pub async fn apply(&self, ms: Vec<Mutation>) -> Result<Option<Timestamp>, TxError> {
self.apply_with_option(ms, ReadWriteTransactionOption::default()).await
}
/// Apply applies a list of mutations atomically to the database.
pub async fn apply_with_option(
&self,
ms: Vec<Mutation>,
options: ReadWriteTransactionOption,
) -> Result<Option<Timestamp>, TxError> {
let result: Result<(Option<Timestamp>, ()), TxError> = self
.read_write_transaction_sync_with_option(
|tx, _cancel| {
tx.buffer_write(ms.to_vec());
Ok(())
},
options,
)
.await;
Ok(result?.0)
}
/// ReadWriteTransaction executes a read-write transaction, with retries as
/// necessary.
///
/// The function f will be called one or more times. It must not maintain
/// any state between calls.
///
/// If the transaction cannot be committed or if f returns an ABORTED error,
/// ReadWriteTransaction will call f again. It will continue to call f until the
/// transaction can be committed or the Context times out or is cancelled. If f
/// returns an error other than ABORTED, ReadWriteTransaction will abort the
/// transaction and return the error.
///
/// To limit the number of retries, set a deadline on the Context rather than
/// using a fixed limit on the number of attempts. ReadWriteTransaction will
/// retry as needed until that deadline is met.
///
/// See <https://godoc.org/cloud.google.com/go/spanner#ReadWriteTransaction> for
/// more details.
/// ```
/// use google_cloud_spanner::mutation::update;
/// use google_cloud_spanner::key::{Key, all_keys};
/// use google_cloud_spanner::value::Timestamp;
/// use google_cloud_spanner::client::RunInTxError;
/// use google_cloud_spanner::client::Client;
/// use google_cloud_spanner::reader::AsyncIterator;
///
/// #[tokio::main]
/// async fn main() -> Result<(), anyhow::Error> {
/// const DATABASE: &str = "projects/local-project/instances/test-instance/databases/local-database";
/// let client = Client::new(DATABASE).await?;
/// let tx_result: Result<(Option<Timestamp>,()), RunInTxError> = client.read_write_transaction(|tx, _| {
/// Box::pin(async move {
/// // The transaction function will be called again if the error code
/// // of this error is Aborted. The backend may automatically abort
/// // any read/write transaction if it detects a deadlock or other problems.
/// let key = all_keys();
/// let mut reader = tx.read("UserItem", &["UserId", "ItemId", "Quantity"], key).await?;
/// let mut ms = vec![];
/// while let Some(row) = reader.next().await? {
/// let user_id = row.column_by_name::<String>("UserId")?;
/// let item_id = row.column_by_name::<i64>("ItemId")?;
/// let quantity = row.column_by_name::<i64>("Quantity")? + 1;
/// let m = update("UserItem", &["Quantity"], &[&user_id, &item_id, &quantity]);
/// ms.push(m);
/// }
/// // The buffered mutation will be committed. If the commit
/// // fails with an Aborted error, this function will be called again
/// tx.buffer_write(ms);
/// Ok(())
/// })
/// }).await;
/// Ok(())
/// }
pub async fn read_write_transaction<'a, T, E, F>(&self, f: F) -> Result<(Option<Timestamp>, T), E>
where
E: TryAs<Status> + From<SessionError> + From<Status>,
F: for<'tx> Fn(
&'tx mut ReadWriteTransaction,
Option<CancellationToken>,
) -> Pin<Box<dyn Future<Output = Result<T, E>> + Send + 'tx>>,
{
self.read_write_transaction_with_option(f, ReadWriteTransactionOption::default())
.await
}
/// ReadWriteTransaction executes a read-write transaction, with retries as
/// necessary.
///
/// The function f will be called one or more times. It must not maintain
/// any state between calls.
///
/// If the transaction cannot be committed or if f returns an ABORTED error,
/// ReadWriteTransaction will call f again. It will continue to call f until the
/// transaction can be committed or the Context times out or is cancelled. If f
/// returns an error other than ABORTED, ReadWriteTransaction will abort the
/// transaction and return the error.
///
/// To limit the number of retries, set a deadline on the Context rather than
/// using a fixed limit on the number of attempts. ReadWriteTransaction will
/// retry as needed until that deadline is met.
///
/// See <https://godoc.org/cloud.google.com/go/spanner#ReadWriteTransaction> for
/// more details.
pub async fn read_write_transaction_with_option<'a, T, E, F>(
&'a self,
f: F,
options: ReadWriteTransactionOption,
) -> Result<(Option<Timestamp>, T), E>
where
E: TryAs<Status> + From<SessionError> + From<Status>,
F: for<'tx> Fn(
&'tx mut ReadWriteTransaction,
Option<CancellationToken>,
) -> Pin<Box<dyn Future<Output = Result<T, E>> + Send + 'tx>>,
{
let (bo, co) = Client::split_read_write_transaction_option(options);
let ro = TransactionRetrySetting::default();
let session = Some(self.get_session().await?);
let cancel = bo.cancel.clone();
// must reuse session
invoke_fn(
cancel.clone(),
Some(ro),
|session| async {
let cancel = cancel.clone().map(|v| v.child_token());
let mut tx = self.create_read_write_transaction::<E>(session, bo.clone()).await?;
let result = f(&mut tx, cancel).await;
tx.finish(result, Some(co.clone())).await
},
session,
)
.await
}
/// begin_read_write_transaction creates new ReadWriteTransaction.
/// ```
/// use google_cloud_spanner::mutation::update;
/// use google_cloud_spanner::key::{Key, all_keys};
/// use google_cloud_spanner::value::Timestamp;
/// use google_cloud_spanner::client::RunInTxError;
/// use google_cloud_spanner::client::Client;
/// use google_cloud_spanner::reader::AsyncIterator;
/// use google_cloud_spanner::transaction_rw::ReadWriteTransaction;
/// use google_cloud_googleapis::spanner::v1::execute_batch_dml_request::Statement;
/// use google_cloud_spanner::retry::TransactionRetry;
///
/// #[tokio::main]
/// async fn main() -> Result<(), anyhow::Error> {
/// const DATABASE: &str = "projects/local-project/instances/test-instance/databases/local-database";
/// let client = Client::new(DATABASE).await?;
/// let retry = &mut TransactionRetry::new();
/// loop {
/// let tx = &mut client.begin_read_write_transaction().await?;
///
/// let result = run_in_transaction(tx).await;
///
/// // try to commit or rollback transaction.
/// match tx.end(result, None).await {
/// Ok((_commit_timestamp, success)) => return Ok(success),
/// Err(err) => retry.next(err).await? // check retry
/// }
/// }
/// Ok(())
/// }
///
/// async fn run_in_transaction(tx: &mut ReadWriteTransaction) -> Result<(), RunInTxError> {
/// let key = all_keys();
/// let mut reader = tx.read("UserItem", &["UserId", "ItemId", "Quantity"], key).await?;
/// let mut ms = vec![];
/// while let Some(row) = reader.next().await? {
/// let user_id = row.column_by_name::<String>("UserId")?;
/// let item_id = row.column_by_name::<i64>("ItemId")?;
/// let quantity = row.column_by_name::<i64>("Quantity")? + 1;
/// let m = update("UserItem", &["UserId", "ItemId", "Quantity"], &[&user_id, &item_id, &quantity]);
/// ms.push(m);
/// }
/// tx.buffer_write(ms);
/// Ok(())
/// }
/// ```
pub async fn begin_read_write_transaction(&self) -> Result<ReadWriteTransaction, TxError> {
let session = self.get_session().await?;
ReadWriteTransaction::begin(session, ReadWriteTransactionOption::default().begin_options)
.await
.map_err(|e| e.status.into())
}
/// Get open session count.
pub fn session_count(&self) -> usize {
self.sessions.num_opened()
}
async fn read_write_transaction_sync_with_option<T, E>(
&self,
f: impl Fn(&mut ReadWriteTransaction, Option<CancellationToken>) -> Result<T, E>,
options: ReadWriteTransactionOption,
) -> Result<(Option<Timestamp>, T), E>
where
E: TryAs<Status> + From<SessionError> + From<Status>,
{
let (bo, co) = Client::split_read_write_transaction_option(options);
let ro = TransactionRetrySetting::default();
let session = Some(self.get_session().await?);
// reuse session
let cancel = bo.cancel.clone();
invoke_fn(
cancel.clone(),
Some(ro),
|session| async {
let cancel = cancel.clone().map(|v| v.child_token());
let mut tx = self.create_read_write_transaction::<E>(session, bo.clone()).await?;
let result = f(&mut tx, cancel);
tx.finish(result, Some(co.clone())).await
},
session,
)
.await
}
async fn create_read_write_transaction<E>(
&self,
session: Option<ManagedSession>,
bo: CallOptions,
) -> Result<ReadWriteTransaction, (E, Option<ManagedSession>)>
where
E: TryAs<Status> + From<SessionError> + From<Status>,
{
ReadWriteTransaction::begin(session.unwrap(), bo)
.await
.map_err(|e| (E::from(e.status), Some(e.session)))
}
async fn get_session(&self) -> Result<ManagedSession, SessionError> {
self.sessions.get().await
}
fn split_read_write_transaction_option(options: ReadWriteTransactionOption) -> (CallOptions, CommitOptions) {
(options.begin_options, options.commit_options)
}
}