goblin 0.0.7

An impish, cross-platform binary parsing and loading crate
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
//! The generic ELF module, which gives access to ELF constants and other helper functions, which are independent of ELF bithood.  Also defines an `Elf` struct which implements a unified parser that returns a wrapped `Elf64` or `Elf32` binary.
//!
//! To access the fields of the contents of the binary (i.e., `ph.p_type`),
//! instead of directly getting the struct fields, you call the similarly named methods.
//!
//! # Example
//!
//! ```rust
//! use std::fs::File;
//!
//! pub fn read (bytes: &[u8]) {
//!   match goblin::elf::Elf::parse(&bytes) {
//!     Ok(binary) => {
//!       let entry = binary.entry;
//!       for ph in binary.program_headers {
//!         if ph.p_type() == goblin::elf::program_header::PT_LOAD {
//!           let mut _buf = vec![0u8; ph.p_filesz() as usize];
//!           // read responsibly
//!          }
//!       }
//!     },
//!     Err(_) => ()
//!   }
//! }
//! ```
//!
//! This will properly access the underlying 32-bit or 64-bit binary automatically. Note that since
//! 32-bit binaries typically have shorter 32-bit values in some cases (specifically for addresses and pointer
//! values), these values are upcasted to u64/i64s when appropriate.
//!
//! See [goblin::elf::Elf](struct.Elf.html) for more information.
//!
//! You are still free to use the specific 32-bit or 64-bit versions by accessing them through `goblin::elf64`, etc., but you will have to parse and/or construct the various components yourself.
//! In other words, there is no 32/64-bit `Elf` struct, only the unified version.
//!
//! # Note
//! To use the automagic ELF datatype union parser, you _must_ enable/opt-in to the  `elf64`, `elf32`, and
//! `endian_fd` features if you disable `default`.

#[cfg(feature = "std")]
pub use super::error;

#[cfg(feature = "std")]
pub mod strtab;

#[macro_use]
mod gnu_hash;

// These are shareable values for the 32/64 bit implementations.
//
// They are publicly re-exported by the pub-using module
#[macro_use]
pub mod header;
#[macro_use]
pub mod program_header;
#[macro_use]
pub mod section_header;
#[macro_use]
pub mod sym;
#[macro_use]
pub mod dyn;
#[macro_use]
pub mod reloc;

#[cfg(all(feature = "std", feature = "elf32", feature = "elf64", feature = "endian_fd"))]
pub use self::impure::*;

#[cfg(all(feature = "std", feature = "elf32", feature = "elf64", feature = "endian_fd"))]
#[macro_use]
mod impure {
    use scroll::{self, ctx, Endian};
    use std::io::Read;
    use std::ops::Deref;
    use super::header;
    use super::strtab::Strtab;
    use super::error;

    use elf32;
    use elf64;

    #[derive(Debug, Clone, PartialEq, Eq)]
    /// Simple union wrapper for 32/64 bit versions of the structs. Really just the `Either`
    /// enum. Each wrapped elf object (Sym, Dyn) implements a deref coercion into the
    /// generic trait for that object, hence you access the fields via methods instead
    /// of direct field access. You shouldn't need to really worry about this enum though.
    pub enum Unified<T32, T64> {
        Elf32(T32),
        Elf64(T64),
    }

    macro_rules! impl_deref {
        () => {
            fn deref(&self) -> &Self::Target {
                match *self {
                    Unified::Elf32(ref thing) => {
                        thing
                    },
                    Unified::Elf64(ref thing) => {
                        thing
                    },
                }
            }
        }
    }

    macro_rules! wrap {
        (elf32, $item:ident) => {
                 Unified::Elf32($item)
        };
        (elf64, $item:ident) => {
                 Unified::Elf64($item)
        }
    }

    #[derive(Debug, Clone)]
    /// A Union wrapper for a vector or list of wrapped ELF objects.
    /// Lazily converts its contents to a wrapped version during iteration.
    pub struct ElfVec<T32, T64> {
        count: usize,
        contents: Unified<Vec<T32>, Vec<T64>>
    }

    impl<T32, T64> ElfVec<T32, T64> where T32: Clone, T64: Clone {
        pub fn new (contents: Unified<Vec<T32>, Vec<T64>>) -> ElfVec<T32, T64> {
            let count = match contents {
                Unified::Elf32(ref vec) => vec.len(),
                Unified::Elf64(ref vec) => vec.len(),
            };
            ElfVec{
                count: count,
                contents: contents
            }
        }
        pub fn len (&self) -> usize {
            self.count
        }

        pub fn get (&self, _index: usize) -> Unified<T32, T64> {
            match self.contents {
                Unified::Elf32(ref vec) => Unified::Elf32(vec[_index].clone()),
                Unified::Elf64(ref vec) => Unified::Elf64(vec[_index].clone()),
            }
        }
    }

    #[derive(Debug, Clone)]
    /// Simple iterator implementation. Lazily converts underlying vector stream to
    /// wrapped version. Currently clones the element because I'm also lazy.
    pub struct ElfVecIter<T32, T64> {
        current: usize,
        contents: Unified<Vec<T32>, Vec<T64>>,
        end: usize,
    }

    impl<T32, T64> Iterator for ElfVecIter<T32, T64> where T32: Clone, T64: Clone {
        type Item = Unified<T32, T64>;
        fn next(&mut self) -> Option<Self::Item> {
            if self.current >= self.end {
                None
            } else {
                let res = match self.contents {
                    Unified::Elf32(ref vec) => Unified::Elf32(vec[self.current].clone()),
                    Unified::Elf64(ref vec) => Unified::Elf64(vec[self.current].clone()),
                };
                self.current += 1;
                Some(res)
            }
        }
    }

    #[derive(Debug, Clone)]
    /// A hack so you can borrow the iterator instead of taking ownership if you don't want to.
    /// Doesn't work very well, need more robust solution.
    pub struct ElfVecIterBorrow<'a, T32:'a, T64:'a> {
        current: usize,
        contents: &'a Unified<Vec<T32>, Vec<T64>>,
        end: usize,
    }

    impl<'a, T32:'a, T64:'a> Iterator for ElfVecIterBorrow<'a, T32, T64> where T32: Clone, T64: Clone {
        type Item = Unified<T32, T64>;
        fn next(&mut self) -> Option<Self::Item> {
            if self.current == self.end {
                None
            } else {
                let res = match self.contents {
                    &Unified::Elf32(ref vec) => Unified::Elf32(vec[self.current].clone()),
                    &Unified::Elf64(ref vec) => Unified::Elf64(vec[self.current].clone()),
                };
                self.current += 1;
                Some(res)
            }
        }
    }

    impl<'a, T32, T64> IntoIterator for &'a ElfVec<T32, T64> where T32: Clone, T64: Clone {
        type Item = Unified<T32, T64>;
        type IntoIter = ElfVecIterBorrow<'a, T32, T64>;

        fn into_iter(self) -> Self::IntoIter {
            ElfVecIterBorrow {
                current: 0,
                end: self.count,
                contents: &self.contents,
            }
        }
    }

    impl<T32, T64> IntoIterator for ElfVec<T32, T64> where T32: Clone, T64: Clone {
        type Item = Unified<T32, T64>;
        type IntoIter = ElfVecIter<T32, T64>;

        fn into_iter(self) -> Self::IntoIter {
            ElfVecIter {
                current: 0,
                end: self.count,
                contents: self.contents,
            }
        }
    }

    macro_rules! elf_list {
        ($class:ident, $collection:ident) => {
            ElfVec::new(wrap!($class, $collection))
        }
    }

    pub type Header = Unified<elf32::header::Header, elf64::header::Header>;
    pub type ProgramHeader = Unified<elf32::program_header::ProgramHeader, elf64::program_header::ProgramHeader>;
    pub type SectionHeader = Unified<elf32::section_header::SectionHeader, elf64::section_header::SectionHeader>;
    pub type Sym = Unified<elf32::sym::Sym, elf64::sym::Sym>;
    pub type Dyn = Unified<elf32::dyn::Dyn, elf64::dyn::Dyn>;

    impl Deref for Header {
        type Target = super::header::ElfHeader;
        impl_deref!();
    }
    impl Deref for ProgramHeader {
        type Target = super::program_header::ElfProgramHeader;
        impl_deref!();
    }
    impl Deref for SectionHeader {
        type Target = super::section_header::ElfSectionHeader;
        impl_deref!();
    }
    impl Deref for Sym {
        type Target = super::sym::ElfSym;
        impl_deref!();
    }
    impl Deref for Dyn {
        type Target = super::dyn::ElfDyn;
        impl_deref!();
    }

    pub type ProgramHeaders = ElfVec<elf32::program_header::ProgramHeader, elf64::program_header::ProgramHeader>;
    pub type SectionHeaders = ElfVec<elf32::section_header::SectionHeader, elf64::section_header::SectionHeader>;
    pub type Syms = ElfVec<elf32::sym::Sym, elf64::sym::Sym>;
    pub type Dynamic = ElfVec<elf32::dyn::Dyn, elf64::dyn::Dyn>;

    #[derive(Debug)]
    /// A "Unified" ELF binary. Contains either 32-bit or 64-bit underlying structs. For relocations a unified
    /// struct representation `Reloc` is used.
    /// To access the fields of the underlying struct, call the field name as a method,
    /// e.g., `dyn.d_val()`
    pub struct Elf {
        /// The ELF header, which provides a rudimentary index into the rest of the binary
        pub header: Header,
        /// The program headers; they primarily tell the kernel and the dynamic linker
        /// how to load this binary
        pub program_headers: ProgramHeaders,
        /// The sections headers. These are strippable, never count on them being
        /// here unless you're a static linker!
        pub section_headers: SectionHeaders,
        /// The section header string table
        pub shdr_strtab: Strtab<'static>,
        /// The string table for the dynamically accessible symbols
        pub dynstrtab: Strtab<'static>,
        /// The dynamically accessible symbols, i.e., exports, imports.
        /// This is what the dynamic linker uses to dynamically load and link your binary,
        /// or find imported symbols for binaries which dynamically link against your library
        pub dynsyms: Syms,
        /// The debugging symbol array
        pub syms: Syms,
        /// The string table for the symbol array
        pub strtab: Strtab<'static>,
        /// The _DYNAMIC array
        pub dynamic: Option<Dynamic>,
        /// The dynamic relocation entries (strings, copy-data, etc.) with an addend
        pub dynrelas: Vec<super::reloc::Reloc>,
        /// The dynamic relocation entries without an addend
        pub dynrels: Vec<super::reloc::Reloc>,
        /// The plt relocation entries (procedure linkage table). For 32-bit binaries these are usually Rel (no addend)
        pub pltrelocs: Vec<super::reloc::Reloc>,
        /// Section relocations (only present if this is a relocatable object file)
        pub shdr_relocs: Vec<super::reloc::Reloc>,
        /// The binary's soname, if it has one
        pub soname: Option<String>,
        /// The binary's program interpreter (e.g., dynamic linker), if it has one
        pub interpreter: Option<String>,
        /// A list of this binary's dynamic libraries it uses, if there are any
        pub libraries: Vec<String>,
        pub is_64: bool,
        /// Whether this is a shared object or not
        pub is_lib: bool,
        /// The binaries entry point address, if it has one
        pub entry: u64,
        /// The bias used to overflow virtual memory addresses into physical byte offsets into the binary
        pub bias: u64,
        /// Whether the binary is little endian or not
        pub little_endian: bool,
    }

    macro_rules! wrap_dyn {
      ($class:ident, $dynamic:ident) => {{
            if let Some(dynamic) = $dynamic {
                Some (elf_list!($class, dynamic))
            } else {
                None
            }
      }}
    }
    macro_rules! intmax {
      (elf32) => {
        !0
      };
      (elf64) => {
        ::core::u64::MAX
      }
    }

    macro_rules! parse_impl {
    ($class:ident, $fd:ident) => {{
        let header = $fd.pread::<$class::header::Header>(0)?;
        let entry = header.e_entry as usize;
        let is_lib = header.e_type == $class::header::ET_DYN;
        let is_lsb = header.e_ident[$class::header::EI_DATA] == $class::header::ELFDATA2LSB;
        let endianness = scroll::Endian::from(is_lsb);
        let is_64 = header.e_ident[$class::header::EI_CLASS] == $class::header::ELFCLASS64;

        let program_headers = $class::program_header::ProgramHeader::parse($fd, header.e_phoff as usize, header.e_phnum as usize, endianness)?;

        let dynamic = $class::dyn::parse($fd, &program_headers, endianness)?;

        let mut bias: usize = 0;
        for ph in &program_headers {
            if ph.p_type == $class::program_header::PT_LOAD {
                // this is an overflow hack that allows us to use virtual memory addresses
                // as though they're in the file by generating a fake load bias which is then
                // used to overflow the values in the dynamic array, and in a few other places
                // (see Dyn::DynamicInfo), to generate actual file offsets; you may have to
                // marinate a bit on why this works. i am unsure whether it works in every
                // conceivable case. i learned this trick from reading too much dynamic linker
                // C code (a whole other class of C code) and having to deal with broken older
                // kernels on VMs. enjoi
                bias = ((intmax!($class) - ph.p_vaddr).wrapping_add(1)) as usize;
                // we must grab only the first one, otherwise the bias will be incorrect
                break;
            }
        }

        let mut interpreter = None;
        for ph in &program_headers {
            if ph.p_type == $class::program_header::PT_INTERP {
                let count = (ph.p_filesz - 1) as usize;
                let offset = ph.p_offset as usize;
                interpreter = Some($fd.pread_slice::<str>(offset, count)?.to_string());
            }
        }

        let section_headers = $class::section_header::SectionHeader::parse($fd, header.e_shoff as usize, header.e_shnum as usize, endianness)?;

        let mut syms = vec![];
        let mut strtab = $class::strtab::Strtab::default();
        for shdr in &section_headers {
            if shdr.sh_type as u32 == $class::section_header::SHT_SYMTAB {
                let count = shdr.sh_size / shdr.sh_entsize;
                syms = $class::sym::parse($fd, shdr.sh_offset as usize, count as usize, endianness)?;
            }
            if shdr.sh_type as u32 == $class::section_header::SHT_STRTAB {
                strtab = $class::strtab::Strtab::parse($fd, shdr.sh_offset as usize, shdr.sh_size as usize, 0x0)?;
            }
        }

        let strtab_idx = header.e_shstrndx as usize;
        let shdr_strtab = if strtab_idx >= section_headers.len() {
            $class::strtab::Strtab::default()
        } else {
            let shdr = &section_headers[strtab_idx];
            try!($class::strtab::Strtab::parse($fd, shdr.sh_offset as usize, shdr.sh_size as usize, 0x0))
        };

        let mut soname = None;
        let mut libraries = vec![];
        let mut dynsyms = vec![];
        let mut dynrelas = vec![];
        let mut dynrels = vec![];
        let mut pltrelocs = vec![];
        let mut dynstrtab = $class::strtab::Strtab::default();
        if let Some(ref dynamic) = dynamic {
            let dyn_info = $class::dyn::DynamicInfo::new(&*dynamic.as_slice(), bias); // we explicitly overflow the values here with our bias
            dynstrtab = $class::strtab::Strtab::parse($fd,
                                                           dyn_info.strtab,
                                                           dyn_info.strsz,
                                                           0x0)?;

            if dyn_info.soname != 0 {
                soname = Some(dynstrtab.get(dyn_info.soname).to_owned())
            }
            if dyn_info.needed_count > 0 {
                let needed = unsafe { $class::dyn::get_needed(dynamic, &dynstrtab, dyn_info.needed_count)};
                libraries = Vec::with_capacity(dyn_info.needed_count);
                for lib in needed {
                    libraries.push(lib.to_owned());
                }
            }
            let num_syms = (dyn_info.strtab - dyn_info.symtab) / dyn_info.syment;
            dynsyms = $class::sym::parse($fd, dyn_info.symtab, num_syms, endianness)?;
            // parse the dynamic relocations
            dynrelas = $class::reloc::parse($fd, dyn_info.rela, dyn_info.relasz, endianness, true)?;
            dynrels = $class::reloc::parse($fd, dyn_info.rel, dyn_info.relsz, endianness, false)?;
            let is_rela = dyn_info.pltrel as u64 == super::dyn::DT_RELA;
            pltrelocs = $class::reloc::parse($fd, dyn_info.jmprel, dyn_info.pltrelsz, endianness, is_rela)?;
        }

        let shdr_relocs = {
            let mut relocs = vec![];
            if header.e_type == super::header::ET_REL {
                for section in &section_headers {
                    println!("section {:?}", section);
                    if section.sh_type == super::section_header::SHT_REL {
                        let sh_relocs = $class::reloc::parse($fd, section.sh_offset as usize, section.sh_size as usize, endianness, false)?;
println!("sh_relocs {:?}", sh_relocs);
                        relocs.extend_from_slice(&sh_relocs);
                    }
                    if section.sh_type == super::section_header::SHT_RELA {
                        let sh_relocs = $class::reloc::parse($fd, section.sh_offset as usize, section.sh_size as usize, endianness, true)?;
                        relocs.extend_from_slice(&sh_relocs);
                    }
                }
            }
            relocs
        };
        Ok(Elf {
            header: wrap!( $class, header),
            program_headers: elf_list!( $class, program_headers),
            section_headers: elf_list!( $class, section_headers),
            shdr_strtab: shdr_strtab,
            dynamic: wrap_dyn!($class, dynamic),
            dynsyms: elf_list!($class, dynsyms),
            dynstrtab: dynstrtab,
            syms: elf_list!($class, syms),
            strtab: strtab,
            dynrelas: dynrelas,
            dynrels: dynrels,
            pltrelocs: pltrelocs,
            shdr_relocs: shdr_relocs,
            soname: soname,
            interpreter: interpreter,
            libraries: libraries,
            is_64: is_64,
            is_lib: is_lib,
            entry: entry as u64,
            bias: bias as u64,
            little_endian: is_lsb,
        })
    }};
}

    impl Elf {
        /// Parses the contents of the byte stream in `buffer`, and maybe returns a unified binary
        pub fn parse<S: scroll::Gread + scroll::Pread<scroll::ctx::DefaultCtx, error::Error>>(buffer: &S) -> error::Result<Self> {
            match header::peek(buffer)? {
                (header::ELFCLASS32, _is_lsb) => {
                    parse_impl!(elf32, buffer)
                },
                (header::ELFCLASS64, _is_lsb) => {
                    parse_impl!(elf64, buffer)
                },
                (class, endianness) => {
                    Err(error::Error::Malformed(format!("Unknown values in ELF ident header: class: {} endianness: {}",
                          class,
                          endianness)).into())
                }
            }
        }
        /// Returns a unified ELF binary from `fd`. Allocates an in-memory byte array the size of the binary in order to increase performance.
        pub fn try_from<R: Read> (fd: &mut R) -> error::Result<Self> {
            let buffer = scroll::Buffer::try_from(fd)?;
            Elf::parse(&buffer)
        }
    }

    impl<'a> ctx::TryFromCtx<'a> for Elf {
        type Error = error::Error;
        fn try_from_ctx(src: &'a [u8], (_, _): (usize, Endian)) -> Result<Self, Self::Error> {
            Elf::parse(&src)
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    use scroll;

    #[test]
    fn endian_trait_parse() {
        let crt1: Vec<u8> = include!("../../etc/crt1.rs");
        let buffer = scroll::Buffer::new(crt1);
        match Elf::parse(&buffer) {
            Ok (binary) => {
                assert!(binary.is_64);
                assert!(!binary.is_lib);
                assert_eq!(binary.entry, 0);
                assert_eq!(binary.bias, 0);
                let syms = binary.syms;
                let mut i = 0;
                assert!(binary.section_headers.len() != 0);
                for sym in &syms {
                    if i == 11 {
                        let symtab = binary.strtab;
                        assert_eq!(&symtab[sym.st_name() as usize], "_start");
                        break;
                    }
                    i += 1;
                }
                assert!(syms.len() != 0);
             },
            Err (err) => {
                println!("failed: {:?}", err);
                assert!(false)
            }
        }
    }
}