goblin 0.0.3

An impish, cross-platform binary parsing and loading crate
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
//! Access ELF constants, other helper functions, which are independent of ELF bithood.  Also
//! provides [`parse`](fn.parse.html) which returns a wrapped `Elf64` or `Elf32` binary.
//!
//! To access the contents of the binary, instead of directly getting the struct fields, you call
//! the similarly named methods.
//!
//! # Example
//!
//! ```rust, no_run
//! use std::fs::File;
//!
//! pub fn read (fd: &mut File) {
//!   match goblin::elf::Elf::parse(fd) {
//!     Ok(binary) => {
//!       let entry = binary.entry;
//!       for ph in binary.program_headers {
//!         if ph.p_type() == goblin::elf::program_header::PT_LOAD {
//!           let mut _buf = vec![0u8; ph.p_filesz() as usize];
//!           // read responsibly
//!          }
//!       }
//!     },
//!     Err(_) => ()
//!   }
//! }
//! ```
//!
//! This will properly access the underlying 32-bit or 64-bit binary automatically. Note that since
//! 32-bit binaries typically have shorter 32-bit values in some cases (specifically for addresses and pointer
//! values), these values are upcasted to u64/i64s when appropriate.
//!
//! See [goblin::elf::Binary](enum.Binary.html) for more information.
//!
//! You are still free to use the specific 32-bit or 64-bit versions by accessing them through `goblin::elf64`, etc.
//!
//! # Note
//! To use the automagic ELF datatype union parser, you _must_ enable/opt-in to the  `elf64`, `elf32`, and
//! `endian_fd` features if you disable `default`.

#[cfg(feature = "std")]
pub mod strtab;

// These are shareable values for the 32/64 bit implementations.
//
// They are publicly re-exported by the pub-using module
#[macro_use]
pub mod header;
#[macro_use]
pub mod program_header;
#[macro_use]
pub mod section_header;
#[macro_use]
pub mod sym;
#[macro_use]
pub mod dyn;
#[macro_use]
pub mod rela;

#[cfg(all(feature = "std", feature = "elf32", feature = "elf64", feature = "endian_fd"))]
pub use self::impure::*;

#[cfg(all(feature = "std", feature = "elf32", feature = "elf64", feature = "endian_fd"))]
#[macro_use]
mod impure {
    use std::io::{self, Read, Seek, Cursor};
    use std::io::SeekFrom::Start;
    use std::fs::File;
    use std::path::Path;
    use std::vec;
    use std::ops::Deref;

    use super::header;
    use super::strtab::Strtab;

    use elf32;
    use elf64;

    #[derive(Debug, Copy, Clone)]
    pub enum Header {
        Elf32(elf32::header::Header),
        Elf64(elf64::header::Header),
    }

    impl Deref for Header {
        type Target = super::header::ElfHeader;
        fn deref(&self) -> &Self::Target {
            match *self {
                Header::Elf32(ref header) => {
                    header
                },
                Header::Elf64(ref header) => {
                    header
                }
            }
        }
    }

    #[derive(Debug, Copy, Clone)]
    pub enum Dyn {
        Elf32(elf32::dyn::Dyn),
        Elf64(elf64::dyn::Dyn),
    }

    impl Deref for Sym {
        type Target = super::sym::ElfSym;
        fn deref(&self) -> &Self::Target {
            match *self {
                Sym::Elf32(ref thing) => {
                    thing
                },
                Sym::Elf64(ref thing) => {
                    thing
                }
            }
        }
    }


    #[derive(Debug, Copy, Clone)]
    pub enum Sym {
        Elf32(elf32::sym::Sym),
        Elf64(elf64::sym::Sym),
    }

    impl Deref for Dyn {
        type Target = super::dyn::ElfDyn;
        fn deref(&self) -> &Self::Target {
            match *self {
                Dyn::Elf32(ref thing) => {
                    thing
                },
                Dyn::Elf64(ref thing) => {
                    thing
                }
            }
        }
    }

    #[derive(Debug, Copy, Clone)]
    pub enum Phdr {
        Elf32(elf32::program_header::ProgramHeader),
        Elf64(elf64::program_header::ProgramHeader),
    }

    impl Deref for Phdr {
        type Target = super::program_header::ElfProgramHeader;
        fn deref(&self) -> &Self::Target {
            match *self {
                Phdr::Elf32(ref thing) => {
                    thing
                },
                Phdr::Elf64(ref thing) => {
                    thing
                }
            }
        }
    }

    #[derive(Debug, Copy, Clone)]
    pub enum Shdr {
        Elf32(elf32::section_header::SectionHeader),
        Elf64(elf64::section_header::SectionHeader),
    }

    impl Deref for Shdr {
        type Target = super::section_header::ElfSectionHeader;
        fn deref(&self) -> &Self::Target {
            match *self {
                Shdr::Elf32(ref thing) => {
                    thing
                },
                Shdr::Elf64(ref thing) => {
                    thing
                }
            }
        }
    }

    #[derive(Debug, Copy, Clone)]
    pub enum Rela {
        Elf32(elf32::rela::Rela),
        Elf64(elf64::rela::Rela),
    }

    impl Deref for Rela {
        type Target = super::rela::ElfRela;
        fn deref(&self) -> &Self::Target {
            match *self {
                Rela::Elf32(ref thing) => {
                    thing
                },
                Rela::Elf64(ref thing) => {
                    thing
                }
            }
        }
    }

    #[derive(Debug)]
    pub struct WrappedIterator<T> {
        count: usize,
        iter: vec::IntoIter<T>,
    }

    impl<T> Iterator for WrappedIterator<T> {
        type Item = T;
        fn next(&mut self) -> Option<T> {
            self.iter.next()
        }
    }

    impl<T> ExactSizeIterator for WrappedIterator<T> {
        fn len(&self) -> usize {
            self.count
        }
    }

    #[derive(Debug)]
    pub struct Elf {
        pub header: Header,
        pub program_headers: WrappedIterator<Phdr>,
        pub section_headers: WrappedIterator<Shdr>,
        pub shdr_strtab: Strtab<'static>,
        pub dynstrtab: Strtab<'static>,
        pub dynsyms: WrappedIterator<Sym>,
        pub syms: WrappedIterator<Sym>,
        pub strtab: Strtab<'static>,
        pub dynamic: Option<WrappedIterator<Dyn>>,
        pub rela: WrappedIterator<Rela>,
        pub pltrela: WrappedIterator<Rela>,
        pub soname: Option<String>,
        pub interpreter: Option<String>,
        pub libraries: Vec<String>,
        pub is_64: bool,
        pub is_lib: bool,
        pub entry: u64,
        pub bias: u64,
    }

    macro_rules! wrap_iter {
      ($class:ident, $wrapper:ident, $collection:ident) => {{
                let count = $collection.len();
                let wrapped: Vec<$wrapper> = $collection.into_iter().map(|item| { wr!($class, $wrapper, item) }).collect();
                WrappedIterator {
                    count: count,
                    iter: wrapped.into_iter(),
                }
      }}
    }
    macro_rules! wr {
        (elf32, $wrapper:ident , $item:ident) => {
                 $wrapper::Elf32($item)
        };
        (elf64, $wrapper:ident , $item:ident) => {
                 $wrapper::Elf64($item)
        }
    }
    macro_rules! wrap_dyn {
      ($class:ident, $dynamic:ident) => {{
            if let Some(dynamic) = $dynamic {
                let count = dynamic.len();
                let dyns: Vec<Dyn> = dynamic.into_iter().map(|dyn| wr!($class, Dyn, dyn) ).collect();
                Some (WrappedIterator {
                    count: count,
                    iter: dyns.into_iter(),
                })
            } else {
                None
            }
      }}
    }
    macro_rules! intmax {
      (elf32) => {
        !0
      };
      (elf64) => {
        ::core::u64::MAX
      }
    }

    macro_rules! parse_impl {
    ($class:ident, $fd:ident) => {{

        let header = try!($class::header::Header::parse($fd));
        let entry = header.e_entry as usize;
        let is_lib = header.e_type == $class::header::ET_DYN;
        let is_lsb = header.e_ident[$class::header::EI_DATA] == $class::header::ELFDATA2LSB;
        let is_64 = header.e_ident[$class::header::EI_CLASS] == $class::header::ELFCLASS64;

        let program_headers = try!($class::program_header::ProgramHeader::parse($fd, header.e_phoff as u64, header.e_phnum as usize, is_lsb));

        let dynamic = try!($class::dyn::parse($fd, &program_headers, is_lsb));
        let mut bias: usize = 0;
        for ph in &program_headers {
            if ph.p_type == $class::program_header::PT_LOAD {
                // this is an overflow hack that allows us to use virtual memory addresses
                // as though they're in the file by generating a fake load bias which is then
                // used to overflow the values in the dynamic array, and in a few other places
                // (see Dyn::DynamicInfo), to generate actual file offsets; you may have to
                // marinate a bit on why this works. i am unsure whether it works in every
                // conceivable case. i learned this trick from reading too much dynamic linker
                // C code (a whole other class of C code) and having to deal with broken older
                // kernels on VMs. enjoi
                bias = ((intmax!($class) - ph.p_vaddr).wrapping_add(1)) as usize;
                break;
            }
        }

        let mut interpreter = None;
        for ph in &program_headers {
            if ph.p_type == $class::program_header::PT_INTERP {
                let mut bytes = vec![0u8; (ph.p_filesz - 1) as usize];
                try!($fd.seek(Start(ph.p_offset as u64)));
                try!($fd.read(&mut bytes));
                interpreter = Some(String::from_utf8(bytes).unwrap())
            }
        }

        let section_headers = try!($class::section_header::SectionHeader::parse($fd, header.e_shoff as u64, header.e_shnum as usize, is_lsb));

        let mut syms = vec![];
        let mut strtab = $class::strtab::Strtab::default();
        for shdr in &section_headers {
            if shdr.sh_type as u32 == $class::section_header::SHT_SYMTAB {
                let count = shdr.sh_size / shdr.sh_entsize;
                syms = try!($class::sym::parse($fd, shdr.sh_offset as usize, count as usize, is_lsb))
            }
            if shdr.sh_type as u32 == $class::section_header::SHT_STRTAB {
                strtab = try!($class::strtab::Strtab::parse($fd, shdr.sh_offset as usize, shdr.sh_size as usize, 0x0));
            }
        }

        let strtab_idx = header.e_shstrndx as usize;
        let shdr_strtab = if strtab_idx >= section_headers.len() {
            $class::strtab::Strtab::default()
        } else {
            let shdr = &section_headers[strtab_idx];
            try!($class::strtab::Strtab::parse($fd, shdr.sh_offset as usize, shdr.sh_size as usize, 0x0))
        };

        let mut soname = None;
        let mut libraries = vec![];
        let mut dynsyms = vec![];
        let mut rela = vec![];
        let mut pltrela = vec![];
        let mut dynstrtab = $class::strtab::Strtab::default();
        if let Some(ref dynamic) = dynamic {
            let dyn_info = $class::dyn::DynamicInfo::new(&dynamic, bias); // we explicitly overflow the values here with our bias
            dynstrtab = try!($class::strtab::Strtab::parse($fd,
                                                           dyn_info.strtab,
                                                           dyn_info.strsz,
                                                           0x0));

            if dyn_info.soname != 0 {
                soname = Some(dynstrtab.get(dyn_info.soname).to_owned())
            }
            if dyn_info.needed_count > 0 {
                let needed = unsafe { $class::dyn::get_needed(dynamic, &dynstrtab, dyn_info.needed_count)};
                libraries = Vec::with_capacity(dyn_info.needed_count);
                for lib in needed {
                    libraries.push(lib.to_owned());
                }
            }

            let num_syms = (dyn_info.strtab - dyn_info.symtab) / dyn_info.syment;
            dynsyms = try!($class::sym::parse($fd, dyn_info.symtab, num_syms, is_lsb));
            rela = try!($class::rela::parse($fd, dyn_info.rela, dyn_info.relasz, is_lsb));
            pltrela = try!($class::rela::parse($fd, dyn_info.jmprel, dyn_info.pltrelsz, is_lsb));
        }
        Ok(Elf {
            header: wr!( $class, Header, header),
            program_headers: wrap_iter!( $class, Phdr, program_headers),
            section_headers: wrap_iter!( $class, Shdr, section_headers),
            shdr_strtab: shdr_strtab,
            dynamic: wrap_dyn!($class, dynamic),
            dynsyms: wrap_iter!($class, Sym, dynsyms),
            dynstrtab: dynstrtab,
            syms: wrap_iter!($class, Sym, syms),
            strtab: strtab,
            rela: wrap_iter!($class, Rela, rela),
            pltrela: wrap_iter!($class, Rela, pltrela),
            soname: soname,
            interpreter: interpreter,
            libraries: libraries,
            is_64: is_64,
            is_lib: is_lib,
            entry: entry as u64,
            bias: bias as u64
        })
    }};
}

    impl Elf {
        pub fn parse<R: Read + Seek>(fd: &mut R) -> io::Result<Self> {
            match try!(header::peek(fd)) {
                (header::ELFCLASS32, _is_lsb) => {
                    parse_impl!(elf32, fd)
                },
                (header::ELFCLASS64, _is_lsb) => {
                    parse_impl!(elf64, fd)
                },
                (class, is_lsb) => {
                    io_error!("Unknown values in ELF ident header: class: {} is_lsb: {}",
                          class,
                          is_lsb)
                }
            }
        }
        /// Returns a unified ELF binary from `path`. Allocates an in-memory byte array the size of
        /// the binary at `path` to increase performance.
        pub fn from (path: &Path) -> io::Result<Self> {
            let mut fd = try!(File::open(path));
            let mut bytes = Vec::new();
            try!(fd.read_to_end(&mut bytes));
            let mut cursor = Cursor::new(&bytes);
            Elf::parse(&mut cursor)
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    use std::io::Cursor;

    #[test]
    fn endian_trait_parse() {
        let crt1: Vec<u8> = include!("../../etc/crt1.rs");
        let mut cursor = Cursor::new(crt1);
        match Elf::parse(&mut cursor) {
            Ok (binary) => {
                assert!(true);
                assert!(binary.is_64);
                assert!(!binary.is_lib);
                assert_eq!(binary.entry, 0);
                assert_eq!(binary.bias, 0);
                let syms = binary.syms;
                let mut i = 0;
                for sym in syms {
                    if i == 11 {
                        let symtab = binary.strtab;
                        assert_eq!(&symtab[sym.st_name() as usize], "_start");
                        break;
                    }
                    i += 1;
                }
             },
            Err (_) => {
                assert!(false)
            }
        }
    }
}