1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
//! PVT solver
use std::collections::HashMap;
use hifitime::{Epoch, Unit};
use log::{debug, error, warn};
use map_3d::deg2rad;
use thiserror::Error;
use nyx::cosmic::eclipse::{eclipse_state, EclipseState};
use nyx::cosmic::Orbit;
use nyx::cosmic::SPEED_OF_LIGHT;
use nyx::md::prelude::{Arc, Cosm};
use nyx::md::prelude::{Bodies, Frame, LightTimeCalc};
use gnss::prelude::SV;
use nalgebra::{DVector, Matrix3, Matrix4, Matrix4x1, MatrixXx4, Vector3};
use crate::{
apriori::AprioriPosition,
bias::{IonosphericBias, TroposphericBias},
candidate::Candidate,
cfg::{Config, Filter, Method},
solutions::{
validator::{SolutionInvalidation, SolutionValidator},
PVTSVData, PVTSolution, PVTSolutionType,
},
};
#[derive(Debug, Clone, Error)]
pub enum Error {
#[error("need more candidates to resolve a {0} a solution")]
NotEnoughInputCandidates(PVTSolutionType),
#[error("not enough candidates fit criteria")]
NotEnoughFittingCandidates,
#[error("failed to invert navigation matrix")]
MatrixInversionError,
#[error("failed to invert covar matrix")]
CovarMatrixInversionError,
#[error("reolved NaN: invalid input matrix")]
TimeIsNan,
#[error("undefined apriori position")]
UndefinedAprioriPosition,
#[error("missing pseudo range observation")]
MissingPseudoRange,
#[error("at least one pseudo range observation is mandatory")]
NeedsAtLeastOnePseudoRange,
#[error("failed to model or measure ionospheric delay")]
MissingIonosphericDelayValue,
#[error("unresolved state: interpolation should have passed")]
UnresolvedState,
#[error("unable to form signal combination")]
SignalRecombination,
#[error("physical non sense: rx prior tx")]
PhysicalNonSenseRxPriorTx,
#[error("physical non sense: t_rx is too late")]
PhysicalNonSenseRxTooLate,
#[error("invalidated solution: {0}")]
InvalidatedSolution(SolutionInvalidation),
// Kalman filter bad op: should never happen
#[error("uninitialized kalman filter!")]
UninitializedKalmanFilter,
}
/// Position interpolator helper
#[derive(Copy, Clone, Debug, PartialEq)]
pub enum InterpolatedPosition {
/// Providing Mass Center position
MassCenter(Vector3<f64>),
/// Providing APC position
AntennaPhaseCenter(Vector3<f64>),
}
#[derive(Debug, Clone)]
pub(crate) struct LSQState {
/* p matrix */
pub(crate) p: Matrix4<f64>,
/* x estimate */
pub(crate) x: Matrix4x1<f64>,
}
#[derive(Debug, Clone)]
pub(crate) struct KfState {
/* p matrix */
pub(crate) p: Matrix4<f64>,
/* x estimate */
pub(crate) x: Matrix4x1<f64>,
}
// impl KfState {
// pub fn eval(&mut self,
// phi: &Matrix4<f64>,
// q: &Matrix4<f64>,
// x: &Vector4<f64>,
// p: &Matrix4x1<f64>,
// ) -> Result<Self, Error> {
// let x = phi * x;
// let p = (phi * p * phi.transpose()) + q;
// Ok(Self {
// x,
// p,
// })
// }
// }
// Filter state
#[derive(Debug, Clone)]
pub(crate) enum FilterState {
/// LSQ state
LSQState(LSQState),
/// KF state
KfState(KfState),
}
impl Default for InterpolatedPosition {
fn default() -> Self {
Self::AntennaPhaseCenter(Vector3::<f64>::default())
}
}
/// Interpolation result (state vector) that needs to be
/// resolved for every single candidate.
#[derive(Copy, Clone, Debug, Default, PartialEq)]
pub struct InterpolationResult {
/// Position vector in [m] ECEF
pub position: InterpolatedPosition,
/// Elevation compared to reference position and horizon in [°]
pub elevation: f64,
/// Azimuth compared to reference position and magnetic North in [°]
pub azimuth: f64,
// Velocity vector in [m/s] ECEF that we calculated ourselves
velocity: Option<Vector3<f64>>,
}
impl InterpolationResult {
/// Builds InterpolationResults from a Mass Center (MC) position
/// as ECEF [m] coordinates
pub fn from_mass_center_position(pos: (f64, f64, f64)) -> Self {
let mut s = Self::default();
s.position = InterpolatedPosition::MassCenter(Vector3::<f64>::new(pos.0, pos.1, pos.2));
s
}
/// Builds InterpolationResults from an Antenna Phase Center (APC) position
/// as ECEF [m] coordinates
pub fn from_apc_position(pos: (f64, f64, f64)) -> Self {
let mut s = Self::default();
s.position =
InterpolatedPosition::AntennaPhaseCenter(Vector3::<f64>::new(pos.0, pos.1, pos.2));
s
}
/// Builds Self with given SV (elevation, azimuth) attitude
pub fn with_elevation_azimuth(&self, elev_azim: (f64, f64)) -> Self {
let mut s = *self;
s.elevation = elev_azim.0;
s.azimuth = elev_azim.1;
s
}
pub(crate) fn position(&self) -> Vector3<f64> {
match self.position {
InterpolatedPosition::MassCenter(mc) => mc,
InterpolatedPosition::AntennaPhaseCenter(pc) => pc,
}
}
pub(crate) fn velocity(&self) -> Option<Vector3<f64>> {
self.velocity
}
pub(crate) fn orbit(&self, dt: Epoch, frame: Frame) -> Orbit {
let p = self.position();
let v = self.velocity().unwrap_or_default();
Orbit::cartesian(
p[0] / 1000.0,
p[1] / 1000.0,
p[2] / 1000.0,
v[0] / 1000.0,
v[1] / 1000.0,
v[2] / 1000.0,
dt,
frame,
)
}
}
/// PVT Solver
#[derive(Debug, Clone)]
pub struct Solver<APC, I>
where
APC: Fn(Epoch, SV, f64) -> Option<(f64, f64, f64)>,
I: Fn(Epoch, SV, usize) -> Option<InterpolationResult>,
{
/// Solver parametrization
pub cfg: Config,
/// apriori position
pub apriori: AprioriPosition,
/// SV state interpolation method. It is mandatory
/// to resolve the SV state at the requested Epoch otherwise the solver
/// will not proceed further. User should provide the interpolation method.
/// Other parameters are SV: Space Vehicle identity we want to resolve, and "usize" interpolation order.
pub interpolator: I,
/// If the Position Interpolator I returns Mass Center positions,
/// and [Config].modeling.sv_apc is turned on, we need to apply the
/// tiny correction to convert the MC to APC.
/// This method should return for a given SV and frequency at current Epoch,
/// the correction expressed as ENU offset in meters.
/// If the interpolator returns Antenna Phase Centers directly, or
/// the SV APC correction is turned off, this interface remains completely idle.
pub apc_correction: APC,
/* Cosmic model */
cosmic: Arc<Cosm>,
/*
* (Reference) Earth frame.
* Could be relevant to rename this the day we want to
* resolve solutions on other Planets... ; )
*/
earth_frame: Frame,
/*
* Sun Body frame
* Could be relevant to rename this the day we want to resolve
* solutions in other Star systems.... o___O
*/
sun_frame: Frame,
/* prev. solution for internal logic */
prev_pvt: Option<(Epoch, PVTSolution)>,
/* current filter state */
filter_state: Option<FilterState>,
/* prev. state vector for internal velocity determination */
prev_sv_state: HashMap<SV, (Epoch, Vector3<f64>)>,
/* already determined APC retrieve */
sv_apc_corrections: Vec<((SV, f64), (f64, f64, f64))>,
}
impl<
APC: std::ops::Fn(Epoch, SV, f64) -> Option<(f64, f64, f64)>,
I: std::ops::Fn(Epoch, SV, usize) -> Option<InterpolationResult>,
> Solver<APC, I>
{
pub fn new(
cfg: &Config,
apriori: AprioriPosition,
interpolator: I,
apc_correction: APC,
) -> Result<Self, Error> {
let cosmic = Cosm::de438();
let sun_frame = cosmic.frame("Sun J2000");
let earth_frame = cosmic.frame("EME2000");
/*
* print some infos on latched config
*/
if cfg.method == Method::SPP && cfg.min_sv_sunlight_rate.is_some() {
warn!("eclipse filter is not meaningful when using spp strategy");
}
if cfg.modeling.relativistic_path_range {
warn!("relativistic path range cannot be modeled at the moment");
}
Ok(Self {
cosmic,
sun_frame,
earth_frame,
apriori,
interpolator,
apc_correction,
cfg: cfg.clone(),
prev_sv_state: HashMap::new(),
sv_apc_corrections: Vec::new(),
filter_state: Option::<FilterState>::None,
prev_pvt: Option::<(Epoch, PVTSolution)>::None,
})
}
/// Try to resolve a PVTSolution at desired "t".
/// "t": sampling instant.
/// "solution": desired PVTSolutionType.
/// "pool": List of candidates.
/// iono_bias: possible IonosphericBias if you can provide such info.
/// tropo_bias: possible TroposphericBias if you can provide such info.
pub fn resolve(
&mut self,
t: Epoch,
solution: PVTSolutionType,
pool: Vec<Candidate>,
iono_bias: &IonosphericBias,
tropo_bias: &TroposphericBias,
) -> Result<(Epoch, PVTSolution), Error> {
let min_required = Self::min_required(solution, &self.cfg);
if pool.len() < min_required {
return Err(Error::NotEnoughInputCandidates(solution));
}
let (x0, y0, z0) = (
self.apriori.ecef.x,
self.apriori.ecef.y,
self.apriori.ecef.z,
);
let (lat_ddeg, lon_ddeg, altitude_above_sea_m) = (
self.apriori.geodetic.x,
self.apriori.geodetic.y,
self.apriori.geodetic.z,
);
let method = self.cfg.method;
let modeling = self.cfg.modeling;
let solver_opts = &self.cfg.solver;
let filter = solver_opts.filter;
let interp_order = self.cfg.interp_order;
let _cosmic = &self.cosmic;
let _earth_frame = self.earth_frame;
/* interpolate positions */
let mut pool: Vec<Candidate> = pool
.iter()
.filter_map(|c| {
match c.transmission_time(&self.cfg) {
Ok((t_tx, dt_ttx)) => {
debug!("{:?} ({}) : signal travel time: {}", t_tx, c.sv, dt_ttx);
if let Some(mut interpolated) =
(self.interpolator)(t_tx, c.sv, interp_order)
{
let mut c = c.clone();
let rot = match modeling.earth_rotation {
true => {
const EARTH_OMEGA_E_WGS84: f64 = 7.2921151467E-5;
let we = EARTH_OMEGA_E_WGS84 * dt_ttx;
let (we_cos, we_sin) = (we.cos(), we.sin());
Matrix3::<f64>::new(
we_cos, we_sin, 0.0_f64, -we_sin, we_cos, 0.0_f64, 0.0_f64,
0.0_f64, 1.0_f64,
)
},
false => Matrix3::<f64>::new(
1.0_f64, 0.0_f64, 0.0_f64, 0.0_f64, 1.0_f64, 0.0_f64, 0.0_f64,
0.0_f64, 1.0_f64,
),
};
interpolated.position = InterpolatedPosition::AntennaPhaseCenter(
rot * interpolated.position(),
);
/* determine velocity */
if let Some((p_ttx, p_position)) = self.prev_sv_state.get(&c.sv) {
let dt = (t_tx - *p_ttx).to_seconds();
interpolated.velocity =
Some((rot * interpolated.position() - rot * p_position) / dt);
}
self.prev_sv_state
.insert(c.sv, (t_tx, interpolated.position()));
if modeling.relativistic_clock_bias {
/*
* following calculations need inst. velocity
*/
if interpolated.velocity.is_some() {
let _orbit = interpolated.orbit(t_tx, self.earth_frame);
const EARTH_SEMI_MAJOR_AXIS_WGS84: f64 = 6378137.0_f64;
const EARTH_GRAVITATIONAL_CONST: f64 = 3986004.418 * 10.0E8;
let orbit = interpolated.orbit(t_tx, self.earth_frame);
let ea_rad = deg2rad(orbit.ea_deg());
let gm = (EARTH_SEMI_MAJOR_AXIS_WGS84
* EARTH_GRAVITATIONAL_CONST)
.sqrt();
let bias = -2.0_f64 * orbit.ecc() * ea_rad.sin() * gm
/ SPEED_OF_LIGHT
/ SPEED_OF_LIGHT
* Unit::Second;
debug!(
"{:?} ({}) : relativistic clock bias: {}",
t_tx, c.sv, bias
);
c.clock_corr += bias;
}
}
debug!(
"{:?} ({}) : interpolated state: {:?}",
t_tx, c.sv, interpolated.position
);
c.state = Some(interpolated);
Some(c)
} else {
warn!("{:?} ({}) : interpolation failed", t_tx, c.sv);
None
}
},
Err(e) => {
error!("{} - transsmision time error: {:?}", c.sv, e);
None
},
}
})
.collect();
/* apply elevation filter (if any) */
if let Some(min_elev) = self.cfg.min_sv_elev {
let mut idx: usize = 0;
let mut nb_removed: usize = 0;
while idx < pool.len() {
if let Some(state) = pool[idx - nb_removed].state {
if state.elevation < min_elev {
debug!(
"{:?} ({}) : below elevation mask",
pool[idx - nb_removed].t,
pool[idx - nb_removed].sv
);
let _ = pool.swap_remove(idx - nb_removed);
nb_removed += 1;
}
}
idx += 1;
}
}
/* remove observed signals above snr mask (if any) */
if let Some(min_snr) = self.cfg.min_snr {
let mut nb_removed: usize = 0;
for idx in 0..pool.len() {
let (init_code, init_phase) = (
pool[idx - nb_removed].code.len(),
pool[idx - nb_removed].phase.len(),
);
pool[idx - nb_removed].min_snr_mask(min_snr);
let delta_code = init_code - pool[idx - nb_removed].code.len();
let delta_phase = init_phase - pool[idx - nb_removed].phase.len();
if delta_code > 0 || delta_phase > 0 {
debug!(
"{:?} ({}) : {} code | {} phase below snr mask",
pool[idx - nb_removed].t,
pool[idx - nb_removed].sv,
delta_code,
delta_phase
);
}
/* make sure we're still compliant */
match method {
Method::SPP => {
if pool[idx - nb_removed].code.is_empty() {
debug!(
"{:?} ({}) dropped on bad snr",
pool[idx - nb_removed].t,
pool[idx - nb_removed].sv
);
let _ = pool.swap_remove(idx - nb_removed);
nb_removed += 1;
}
},
Method::PPP => {
let mut drop = !pool[idx - nb_removed].dual_freq_pseudorange();
drop |= !pool[idx - nb_removed].dual_freq_phase();
if drop {
let _ = pool.swap_remove(idx - nb_removed);
nb_removed += 1;
}
},
}
}
}
/* apply eclipse filter (if need be) */
if let Some(min_rate) = self.cfg.min_sv_sunlight_rate {
let mut nb_removed: usize = 0;
for idx in 0..pool.len() {
let state = pool[idx - nb_removed].state.unwrap(); // infaillible
let orbit = state.orbit(pool[idx - nb_removed].t, self.earth_frame);
let state = eclipse_state(&orbit, self.sun_frame, self.earth_frame, &self.cosmic);
let eclipsed = match state {
EclipseState::Umbra => true,
EclipseState::Visibilis => false,
EclipseState::Penumbra(r) => r < min_rate,
};
if eclipsed {
debug!(
"{:?} ({}): dropped - eclipsed by earth",
pool[idx - nb_removed].t,
pool[idx - nb_removed].sv
);
let _ = pool.swap_remove(idx - nb_removed);
nb_removed += 1;
}
}
}
/* make sure we still have enough SV */
let nb_candidates = pool.len();
if nb_candidates < min_required {
return Err(Error::NotEnoughFittingCandidates);
} else {
debug!("{:?}: {} elected sv", t, nb_candidates);
}
/* form matrix */
let mut y = DVector::<f64>::zeros(nb_candidates);
let mut g = MatrixXx4::<f64>::zeros(nb_candidates);
let mut pvt_sv_data = HashMap::<SV, PVTSVData>::with_capacity(nb_candidates);
let r_sun = Self::sun_unit_vector(&self.earth_frame, &self.cosmic, t);
for (row_index, cd) in pool.iter().enumerate() {
if let Ok(sv_data) = cd.resolve(
t,
&self.cfg,
(x0, y0, z0),
(lat_ddeg, lon_ddeg, altitude_above_sea_m),
iono_bias,
tropo_bias,
row_index,
&mut y,
&mut g,
&r_sun,
) {
pvt_sv_data.insert(cd.sv, sv_data);
}
}
let w = self.cfg.solver.weight_matrix(
nb_candidates,
pvt_sv_data
.values()
.map(|sv_data| sv_data.elevation)
.collect(),
);
let (mut pvt_solution, new_state) = PVTSolution::new(
g.clone(),
w.clone(),
y.clone(),
pvt_sv_data.clone(),
filter,
self.filter_state.clone(),
)?;
let validator = SolutionValidator::new(&self.apriori.ecef, &pool, &w, &pvt_solution);
let valid = validator.valid(solver_opts);
if valid.is_err() {
return Err(Error::InvalidatedSolution(valid.err().unwrap()));
}
if let Some((prev_t, prev_pvt)) = &self.prev_pvt {
pvt_solution.vel = (pvt_solution.pos - prev_pvt.pos) / (t - *prev_t).to_seconds();
}
self.prev_pvt = Some((t, pvt_solution.clone()));
if filter != Filter::None {
self.filter_state = new_state;
}
/*
* slightly rework the solution so it ""looks"" like
* what we expect based on the defined setup.
*/
if let Some(alt) = self.cfg.fixed_altitude {
pvt_solution.pos.z = self.apriori.ecef.z - alt;
pvt_solution.vel.z = 0.0_f64;
}
match solution {
PVTSolutionType::TimeOnly => {
pvt_solution.pos = Vector3::<f64>::default();
pvt_solution.vel = Vector3::<f64>::default();
},
_ => {},
}
Ok((t, pvt_solution))
}
/*
* Evaluates Sun/Earth vector in meter ECEF at given Epoch
*/
fn sun_unit_vector(ref_frame: &Frame, cosmic: &Arc<Cosm>, t: Epoch) -> Vector3<f64> {
let sun_body = Bodies::Sun;
let orbit =
cosmic.celestial_state(sun_body.ephem_path(), t, *ref_frame, LightTimeCalc::None);
Vector3::new(
orbit.x_km * 1000.0,
orbit.y_km * 1000.0,
orbit.z_km * 1000.0,
)
}
/*
* Returns nb of vehicles we need to gather
*/
fn min_required(solution: PVTSolutionType, cfg: &Config) -> usize {
match solution {
PVTSolutionType::TimeOnly => 1,
_ => {
let mut n = 4;
if cfg.fixed_altitude.is_some() {
n -= 1;
}
n
},
}
}
}