gnostr 0.0.48

git+nostr workflow utility
Documentation
/* MIT (BSD) license - see LICENSE file for details */
/* SHA256 core code translated from the Bitcoin project's C++:
 *
 * src/crypto/sha256.cpp commit 417532c8acb93c36c2b6fd052b7c11b6a2906aa2
 * Copyright (c) 2014 The Bitcoin Core developers
 * Distributed under the MIT software license, see the accompanying
 * file COPYING or http://www.opensource.org/licenses/mit-license.php.
 */
#include "sha256.h"
#include "endian.h"
#include "compiler.h"
#include <stdbool.h>
#include <assert.h>
#include <string.h>

static void invalidate_sha256(struct sha256_ctx *ctx)
{
#ifdef CCAN_CRYPTO_SHA256_USE_OPENSSL
	ctx->c.md_len = 0;
#else
	ctx->bytes = (size_t)-1;
#endif
}

static void check_sha256(struct sha256_ctx *ctx)
{
#ifdef CCAN_CRYPTO_SHA256_USE_OPENSSL
	assert(ctx->c.md_len != 0);
#else
	assert(ctx->bytes != (size_t)-1);
#endif
}

#ifdef CCAN_CRYPTO_SHA256_USE_OPENSSL
void sha256_init(struct sha256_ctx *ctx)
{
	SHA256_Init(&ctx->c);
}

void sha256_update(struct sha256_ctx *ctx, const void *p, size_t size)
{
	check_sha256(ctx);
	SHA256_Update(&ctx->c, p, size);
}

void sha256_done(struct sha256_ctx *ctx, struct sha256 *res)
{
	SHA256_Final(res->u.u8, &ctx->c);
	invalidate_sha256(ctx);
}
#else
static uint32_t Ch(uint32_t x, uint32_t y, uint32_t z)
{
	return z ^ (x & (y ^ z));
}
static uint32_t Maj(uint32_t x, uint32_t y, uint32_t z)
{
	return (x & y) | (z & (x | y));
}
static uint32_t Sigma0(uint32_t x)
{
	return (x >> 2 | x << 30) ^ (x >> 13 | x << 19) ^ (x >> 22 | x << 10);
}
static uint32_t Sigma1(uint32_t x)
{
	return (x >> 6 | x << 26) ^ (x >> 11 | x << 21) ^ (x >> 25 | x << 7);
}
static uint32_t sigma0(uint32_t x)
{
	return (x >> 7 | x << 25) ^ (x >> 18 | x << 14) ^ (x >> 3);
}
static uint32_t sigma1(uint32_t x)
{
	return (x >> 17 | x << 15) ^ (x >> 19 | x << 13) ^ (x >> 10);
}

/** One round of SHA-256. */
static void Round(uint32_t a, uint32_t b, uint32_t c, uint32_t *d, uint32_t e, uint32_t f, uint32_t g, uint32_t *h, uint32_t k, uint32_t w)
{
	uint32_t t1 = *h + Sigma1(e) + Ch(e, f, g) + k + w;
	uint32_t t2 = Sigma0(a) + Maj(a, b, c);
	*d += t1;
	*h = t1 + t2;
}

/** Perform one SHA-256 transformation, processing a 64-byte chunk. */
static void Transform(uint32_t *s, const uint32_t *chunk)
{
	uint32_t a = s[0], b = s[1], c = s[2], d = s[3], e = s[4], f = s[5], g = s[6], h = s[7];
	uint32_t w0, w1, w2, w3, w4, w5, w6, w7, w8, w9, w10, w11, w12, w13, w14, w15;

	Round(a, b, c, &d, e, f, g, &h, 0x428a2f98, w0 = be32_to_cpu(chunk[0]));
	Round(h, a, b, &c, d, e, f, &g, 0x71374491, w1 = be32_to_cpu(chunk[1]));
	Round(g, h, a, &b, c, d, e, &f, 0xb5c0fbcf, w2 = be32_to_cpu(chunk[2]));
	Round(f, g, h, &a, b, c, d, &e, 0xe9b5dba5, w3 = be32_to_cpu(chunk[3]));
	Round(e, f, g, &h, a, b, c, &d, 0x3956c25b, w4 = be32_to_cpu(chunk[4]));
	Round(d, e, f, &g, h, a, b, &c, 0x59f111f1, w5 = be32_to_cpu(chunk[5]));
	Round(c, d, e, &f, g, h, a, &b, 0x923f82a4, w6 = be32_to_cpu(chunk[6]));
	Round(b, c, d, &e, f, g, h, &a, 0xab1c5ed5, w7 = be32_to_cpu(chunk[7]));
	Round(a, b, c, &d, e, f, g, &h, 0xd807aa98, w8 = be32_to_cpu(chunk[8]));
	Round(h, a, b, &c, d, e, f, &g, 0x12835b01, w9 = be32_to_cpu(chunk[9]));
	Round(g, h, a, &b, c, d, e, &f, 0x243185be, w10 = be32_to_cpu(chunk[10]));
	Round(f, g, h, &a, b, c, d, &e, 0x550c7dc3, w11 = be32_to_cpu(chunk[11]));
	Round(e, f, g, &h, a, b, c, &d, 0x72be5d74, w12 = be32_to_cpu(chunk[12]));
	Round(d, e, f, &g, h, a, b, &c, 0x80deb1fe, w13 = be32_to_cpu(chunk[13]));
	Round(c, d, e, &f, g, h, a, &b, 0x9bdc06a7, w14 = be32_to_cpu(chunk[14]));
	Round(b, c, d, &e, f, g, h, &a, 0xc19bf174, w15 = be32_to_cpu(chunk[15]));

	Round(a, b, c, &d, e, f, g, &h, 0xe49b69c1, w0 += sigma1(w14) + w9 + sigma0(w1));
	Round(h, a, b, &c, d, e, f, &g, 0xefbe4786, w1 += sigma1(w15) + w10 + sigma0(w2));
	Round(g, h, a, &b, c, d, e, &f, 0x0fc19dc6, w2 += sigma1(w0) + w11 + sigma0(w3));
	Round(f, g, h, &a, b, c, d, &e, 0x240ca1cc, w3 += sigma1(w1) + w12 + sigma0(w4));
	Round(e, f, g, &h, a, b, c, &d, 0x2de92c6f, w4 += sigma1(w2) + w13 + sigma0(w5));
	Round(d, e, f, &g, h, a, b, &c, 0x4a7484aa, w5 += sigma1(w3) + w14 + sigma0(w6));
	Round(c, d, e, &f, g, h, a, &b, 0x5cb0a9dc, w6 += sigma1(w4) + w15 + sigma0(w7));
	Round(b, c, d, &e, f, g, h, &a, 0x76f988da, w7 += sigma1(w5) + w0 + sigma0(w8));
	Round(a, b, c, &d, e, f, g, &h, 0x983e5152, w8 += sigma1(w6) + w1 + sigma0(w9));
	Round(h, a, b, &c, d, e, f, &g, 0xa831c66d, w9 += sigma1(w7) + w2 + sigma0(w10));
	Round(g, h, a, &b, c, d, e, &f, 0xb00327c8, w10 += sigma1(w8) + w3 + sigma0(w11));
	Round(f, g, h, &a, b, c, d, &e, 0xbf597fc7, w11 += sigma1(w9) + w4 + sigma0(w12));
	Round(e, f, g, &h, a, b, c, &d, 0xc6e00bf3, w12 += sigma1(w10) + w5 + sigma0(w13));
	Round(d, e, f, &g, h, a, b, &c, 0xd5a79147, w13 += sigma1(w11) + w6 + sigma0(w14));
	Round(c, d, e, &f, g, h, a, &b, 0x06ca6351, w14 += sigma1(w12) + w7 + sigma0(w15));
	Round(b, c, d, &e, f, g, h, &a, 0x14292967, w15 += sigma1(w13) + w8 + sigma0(w0));

	Round(a, b, c, &d, e, f, g, &h, 0x27b70a85, w0 += sigma1(w14) + w9 + sigma0(w1));
	Round(h, a, b, &c, d, e, f, &g, 0x2e1b2138, w1 += sigma1(w15) + w10 + sigma0(w2));
	Round(g, h, a, &b, c, d, e, &f, 0x4d2c6dfc, w2 += sigma1(w0) + w11 + sigma0(w3));
	Round(f, g, h, &a, b, c, d, &e, 0x53380d13, w3 += sigma1(w1) + w12 + sigma0(w4));
	Round(e, f, g, &h, a, b, c, &d, 0x650a7354, w4 += sigma1(w2) + w13 + sigma0(w5));
	Round(d, e, f, &g, h, a, b, &c, 0x766a0abb, w5 += sigma1(w3) + w14 + sigma0(w6));
	Round(c, d, e, &f, g, h, a, &b, 0x81c2c92e, w6 += sigma1(w4) + w15 + sigma0(w7));
	Round(b, c, d, &e, f, g, h, &a, 0x92722c85, w7 += sigma1(w5) + w0 + sigma0(w8));
	Round(a, b, c, &d, e, f, g, &h, 0xa2bfe8a1, w8 += sigma1(w6) + w1 + sigma0(w9));
	Round(h, a, b, &c, d, e, f, &g, 0xa81a664b, w9 += sigma1(w7) + w2 + sigma0(w10));
	Round(g, h, a, &b, c, d, e, &f, 0xc24b8b70, w10 += sigma1(w8) + w3 + sigma0(w11));
	Round(f, g, h, &a, b, c, d, &e, 0xc76c51a3, w11 += sigma1(w9) + w4 + sigma0(w12));
	Round(e, f, g, &h, a, b, c, &d, 0xd192e819, w12 += sigma1(w10) + w5 + sigma0(w13));
	Round(d, e, f, &g, h, a, b, &c, 0xd6990624, w13 += sigma1(w11) + w6 + sigma0(w14));
	Round(c, d, e, &f, g, h, a, &b, 0xf40e3585, w14 += sigma1(w12) + w7 + sigma0(w15));
	Round(b, c, d, &e, f, g, h, &a, 0x106aa070, w15 += sigma1(w13) + w8 + sigma0(w0));

	Round(a, b, c, &d, e, f, g, &h, 0x19a4c116, w0 += sigma1(w14) + w9 + sigma0(w1));
	Round(h, a, b, &c, d, e, f, &g, 0x1e376c08, w1 += sigma1(w15) + w10 + sigma0(w2));
	Round(g, h, a, &b, c, d, e, &f, 0x2748774c, w2 += sigma1(w0) + w11 + sigma0(w3));
	Round(f, g, h, &a, b, c, d, &e, 0x34b0bcb5, w3 += sigma1(w1) + w12 + sigma0(w4));
	Round(e, f, g, &h, a, b, c, &d, 0x391c0cb3, w4 += sigma1(w2) + w13 + sigma0(w5));
	Round(d, e, f, &g, h, a, b, &c, 0x4ed8aa4a, w5 += sigma1(w3) + w14 + sigma0(w6));
	Round(c, d, e, &f, g, h, a, &b, 0x5b9cca4f, w6 += sigma1(w4) + w15 + sigma0(w7));
	Round(b, c, d, &e, f, g, h, &a, 0x682e6ff3, w7 += sigma1(w5) + w0 + sigma0(w8));
	Round(a, b, c, &d, e, f, g, &h, 0x748f82ee, w8 += sigma1(w6) + w1 + sigma0(w9));
	Round(h, a, b, &c, d, e, f, &g, 0x78a5636f, w9 += sigma1(w7) + w2 + sigma0(w10));
	Round(g, h, a, &b, c, d, e, &f, 0x84c87814, w10 += sigma1(w8) + w3 + sigma0(w11));
	Round(f, g, h, &a, b, c, d, &e, 0x8cc70208, w11 += sigma1(w9) + w4 + sigma0(w12));
	Round(e, f, g, &h, a, b, c, &d, 0x90befffa, w12 += sigma1(w10) + w5 + sigma0(w13));
	Round(d, e, f, &g, h, a, b, &c, 0xa4506ceb, w13 += sigma1(w11) + w6 + sigma0(w14));
	Round(c, d, e, &f, g, h, a, &b, 0xbef9a3f7, w14 + sigma1(w12) + w7 + sigma0(w15));
	Round(b, c, d, &e, f, g, h, &a, 0xc67178f2, w15 + sigma1(w13) + w8 + sigma0(w0));

	s[0] += a;
	s[1] += b;
	s[2] += c;
	s[3] += d;
	s[4] += e;
	s[5] += f;
	s[6] += g;
	s[7] += h;
}


static void add(struct sha256_ctx *ctx, const void *p, size_t len)
{
	const unsigned char *data = p;
	size_t bufsize = ctx->bytes % 64;

	if (bufsize + len >= 64) {
		/* Fill the buffer, and process it. */
		memcpy(ctx->buf.u8 + bufsize, data, 64 - bufsize);
		ctx->bytes += 64 - bufsize;
		data += 64 - bufsize;
		len -= 64 - bufsize;
		Transform(ctx->s, ctx->buf.u32);
		bufsize = 0;
	}

	while (len >= 64) {
		/* Process full chunks directly from the source. */
		if (alignment_ok(data, sizeof(uint32_t)))
			Transform(ctx->s, (const uint32_t *)data);
		else {
			memcpy(ctx->buf.u8, data, sizeof(ctx->buf));
			Transform(ctx->s, ctx->buf.u32);
		}
		ctx->bytes += 64;
		data += 64;
		len -= 64;
	}

	if (len) {
		/* Fill the buffer with what remains. */
		memcpy(ctx->buf.u8 + bufsize, data, len);
		ctx->bytes += len;
	}
}

void sha256_init(struct sha256_ctx *ctx)
{
	struct sha256_ctx init = SHA256_INIT;
	*ctx = init;
}

void sha256_update(struct sha256_ctx *ctx, const void *p, size_t size)
{
	check_sha256(ctx);
	add(ctx, p, size);
}

void sha256_done(struct sha256_ctx *ctx, struct sha256 *res)
{
	static const unsigned char pad[64] = {0x80};
	uint64_t sizedesc;
	size_t i;

	sizedesc = cpu_to_be64((uint64_t)ctx->bytes << 3);
	/* Add '1' bit to terminate, then all 0 bits, up to next block - 8. */
	add(ctx, pad, 1 + ((128 - 8 - (ctx->bytes % 64) - 1) % 64));
	/* Add number of bits of data (big endian) */
	add(ctx, &sizedesc, 8);
	for (i = 0; i < sizeof(ctx->s) / sizeof(ctx->s[0]); i++)
		res->u.u32[i] = cpu_to_be32(ctx->s[i]);
	invalidate_sha256(ctx);
}
#endif

void sha256(struct sha256 *sha, const void *p, size_t size)
{
	struct sha256_ctx ctx;

	sha256_init(&ctx);
	sha256_update(&ctx, p, size);
	sha256_done(&ctx, sha);
}

void sha256_u8(struct sha256_ctx *ctx, uint8_t v)
{
	sha256_update(ctx, &v, sizeof(v));
}

void sha256_u16(struct sha256_ctx *ctx, uint16_t v)
{
	sha256_update(ctx, &v, sizeof(v));
}

void sha256_u32(struct sha256_ctx *ctx, uint32_t v)
{
	sha256_update(ctx, &v, sizeof(v));
}

void sha256_u64(struct sha256_ctx *ctx, uint64_t v)
{
	sha256_update(ctx, &v, sizeof(v));
}

/* Add as little-endian */
void sha256_le16(struct sha256_ctx *ctx, uint16_t v)
{
	leint16_t lev = cpu_to_le16(v);
	sha256_update(ctx, &lev, sizeof(lev));
}

void sha256_le32(struct sha256_ctx *ctx, uint32_t v)
{
	leint32_t lev = cpu_to_le32(v);
	sha256_update(ctx, &lev, sizeof(lev));
}

void sha256_le64(struct sha256_ctx *ctx, uint64_t v)
{
	leint64_t lev = cpu_to_le64(v);
	sha256_update(ctx, &lev, sizeof(lev));
}

/* Add as big-endian */
void sha256_be16(struct sha256_ctx *ctx, uint16_t v)
{
	beint16_t bev = cpu_to_be16(v);
	sha256_update(ctx, &bev, sizeof(bev));
}

void sha256_be32(struct sha256_ctx *ctx, uint32_t v)
{
	beint32_t bev = cpu_to_be32(v);
	sha256_update(ctx, &bev, sizeof(bev));
}

void sha256_be64(struct sha256_ctx *ctx, uint64_t v)
{
	beint64_t bev = cpu_to_be64(v);
	sha256_update(ctx, &bev, sizeof(bev));
}