glium 0.34.0

Elegant and safe OpenGL wrapper. Glium is an intermediate layer between OpenGL and your application. You still need to manually handle the graphics pipeline, but without having to use OpenGL's old and error-prone API. Its objectives: - Be safe to use. Many aspects of OpenGL that can trigger a crash if misused are automatically handled by glium. - Provide an API that enforces good pratices such as RAII or stateless function calls. - Be compatible with all OpenGL versions that support shaders, providing unified API when things diverge. - Avoid all OpenGL errors beforehand. - Produce optimized OpenGL function calls, and allow the user to easily use modern OpenGL techniques.
Documentation
use crate::gl;

use crate::context::CommandContext;
use crate::backend::Facade;

use std::fmt;
use std::collections::hash_map::{self, HashMap};
use std::os::raw;
use std::hash::BuildHasherDefault;

use fnv::FnvHasher;

use crate::CapabilitiesSource;
use crate::GlObject;
use crate::ProgramExt;
use crate::Handle;
use crate::RawUniformValue;

use crate::program::{COMPILER_GLOBAL_LOCK, ProgramCreationError, Binary, GetBinaryError, SpirvEntryPoint};

use crate::program::reflection::{Uniform, UniformBlock};
use crate::program::reflection::{ShaderStage, SubroutineData};
use crate::program::shader::{build_shader, build_spirv_shader, check_shader_type_compatibility};

use crate::program::raw::RawProgram;

use crate::buffer::BufferSlice;
use crate::uniforms::Uniforms;

/// A combination of compute shaders linked together.
pub struct ComputeShader {
    raw: RawProgram,
}

impl ComputeShader {
    /// Returns true if the backend supports compute shaders.
    #[inline]
    pub fn is_supported<C: ?Sized>(ctxt: &C) -> bool where C: CapabilitiesSource {
        check_shader_type_compatibility(ctxt, gl::COMPUTE_SHADER)
    }

    /// Builds a new compute shader from some source code.
    #[inline]
    pub fn from_source<F: ?Sized>(facade: &F, src: &str) -> Result<ComputeShader, ProgramCreationError>
                          where F: Facade
    {
        let _lock = COMPILER_GLOBAL_LOCK.lock();

        let shader = build_shader(facade, gl::COMPUTE_SHADER, src)?;

        Ok(ComputeShader {
            raw: RawProgram::from_shaders(facade, &[shader], false, false, false, None)?
        })
    }

    /// Builds a new compute shader from SPIR-V module.
    #[inline]
    pub fn from_spirv<F: ?Sized>(facade: &F, spirv: &SpirvEntryPoint) -> Result<ComputeShader, ProgramCreationError>
                          where F: Facade
    {
        let _lock = COMPILER_GLOBAL_LOCK.lock();

        let shader = build_spirv_shader(facade, gl::COMPUTE_SHADER, spirv)?;

        Ok(ComputeShader {
            raw: RawProgram::from_shaders(facade, &[shader], false, false, false, None)?
        })
    }

    /// Builds a new compute shader from some binary.
    #[inline]
    pub fn from_binary<F: ?Sized>(facade: &F, data: Binary) -> Result<ComputeShader, ProgramCreationError>
                          where F: Facade
    {
        let _lock = COMPILER_GLOBAL_LOCK.lock();

        Ok(ComputeShader {
            raw: RawProgram::from_binary(facade, data)?
        })
    }

    /// Executes the compute shader.
    ///
    /// `x * y * z` work groups will be started. The current work group can be retrieved with
    /// `gl_WorkGroupID`. Inside each work group, additional local work groups can be started
    /// depending on the attributes of the compute shader itself.
    #[inline]
    pub fn execute<U>(&self, uniforms: U, x: u32, y: u32, z: u32) where U: Uniforms {
        unsafe { self.raw.dispatch_compute(uniforms, x, y, z) }.unwrap();       // FIXME: return error
    }

    /// Executes the compute shader.
    ///
    /// This is similar to `execute`, except that the parameters are stored in a buffer.
    #[inline]
    pub fn execute_indirect<U>(&self, uniforms: U, buffer: BufferSlice<'_, ComputeCommand>)
                               where U: Uniforms
    {
        unsafe { self.raw.dispatch_compute_indirect(uniforms, buffer) }.unwrap();       // FIXME: return error
    }

    /// Returns the program's compiled binary.
    ///
    /// You can store the result in a file, then reload it later. This avoids having to compile
    /// the source code every time.
    #[inline]
    pub fn get_binary(&self) -> Result<Binary, GetBinaryError> {
        self.raw.get_binary()
    }

    /// Returns informations about a uniform variable, if it exists.
    #[inline]
    pub fn get_uniform(&self, name: &str) -> Option<&Uniform> {
        self.raw.get_uniform(name)
    }

    /// Returns an iterator to the list of uniforms.
    ///
    /// ## Example
    ///
    /// ```no_run
    /// # fn example(program: glium::Program) {
    /// for (name, uniform) in program.uniforms() {
    ///     println!("Name: {} - Type: {:?}", name, uniform.ty);
    /// }
    /// # }
    /// ```
    #[inline]
    pub fn uniforms(&self) -> hash_map::Iter<'_, String, Uniform> {
        self.raw.uniforms()
    }

    /// Returns a list of uniform blocks.
    ///
    /// ## Example
    ///
    /// ```no_run
    /// # fn example(program: glium::Program) {
    /// for (name, uniform) in program.get_uniform_blocks() {
    ///     println!("Name: {}", name);
    /// }
    /// # }
    /// ```
    #[inline]
    pub fn get_uniform_blocks(&self)
                              -> &HashMap<String, UniformBlock, BuildHasherDefault<FnvHasher>> {
        self.raw.get_uniform_blocks()
    }

    /// Returns the list of shader storage blocks.
    ///
    /// ## Example
    ///
    /// ```no_run
    /// fn example(program: glium::Program) {
    /// for (name, uniform) in program.get_shader_storage_blocks() {
    ///     println!("Name: {}", name);
    /// }
    /// # }
    /// ```
    #[inline]
    pub fn get_shader_storage_blocks(&self)
            -> &HashMap<String, UniformBlock, BuildHasherDefault<FnvHasher>> {
        self.raw.get_shader_storage_blocks()
    }
}

impl fmt::Debug for ComputeShader {
    #[inline]
    fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
        write!(formatter, "{:?}", self.raw)
    }
}

impl GlObject for ComputeShader {
    type Id = Handle;

    #[inline]
    fn get_id(&self) -> Handle {
        self.raw.get_id()
    }
}

impl ProgramExt for ComputeShader {
    #[inline]
    fn use_program(&self, ctxt: &mut CommandContext<'_>) {
        self.raw.use_program(ctxt)
    }

    #[inline]
    fn set_uniform(&self, ctxt: &mut CommandContext<'_>, uniform_location: gl::types::GLint,
                   value: &RawUniformValue)
    {
        self.raw.set_uniform(ctxt, uniform_location, value)
    }

    #[inline]
    fn set_uniform_block_binding(&self, ctxt: &mut CommandContext<'_>, block_location: gl::types::GLuint,
                                 value: gl::types::GLuint)
    {
        self.raw.set_uniform_block_binding(ctxt, block_location, value)
    }

    #[inline]
    fn set_shader_storage_block_binding(&self, ctxt: &mut CommandContext<'_>,
                                        block_location: gl::types::GLuint,
                                        value: gl::types::GLuint)
    {
        self.raw.set_shader_storage_block_binding(ctxt, block_location, value)
    }

    #[inline]
    fn set_subroutine_uniforms_for_stage(&self, ctxt: &mut CommandContext<'_>,
                                         stage: ShaderStage,
                                         indices: &[gl::types::GLuint])
    {
        self.raw.set_subroutine_uniforms_for_stage(ctxt, stage, indices);
    }

    #[inline]
    fn get_uniform(&self, name: &str) -> Option<&Uniform> {
        self.raw.get_uniform(name)
    }

    #[inline]
    fn get_uniform_blocks(&self) -> &HashMap<String, UniformBlock, BuildHasherDefault<FnvHasher>> {
        self.raw.get_uniform_blocks()
    }

    #[inline]
    fn get_shader_storage_blocks(&self)
                                 -> &HashMap<String, UniformBlock, BuildHasherDefault<FnvHasher>> {
        self.raw.get_shader_storage_blocks()
    }

    #[inline]
    fn get_atomic_counters(&self)
                                 -> &HashMap<String, UniformBlock, BuildHasherDefault<FnvHasher>> {
        self.raw.get_atomic_counters()
    }

    #[inline]
    fn get_subroutine_data(&self) -> &SubroutineData {
        self.raw.get_subroutine_data()
    }
}

/// Represents a compute shader command waiting to be dispatched.
#[repr(C)]
#[derive(Debug, Copy, Clone)]
pub struct ComputeCommand {
    /// Number of X groups.
    pub num_groups_x: raw::c_uint,
    /// Number of Y groups.
    pub num_groups_y: raw::c_uint,
    /// Number of Z groups.
    pub num_groups_z: raw::c_uint,
}

implement_uniform_block!(ComputeCommand, num_groups_x, num_groups_y, num_groups_z);