#[cfg(not(feature = "scalar-math"))]
use crate::BVec4A;
use crate::{f64::math, BVec4, DVec2, DVec3, IVec4, UVec4, Vec4};
use core::fmt;
use core::iter::{Product, Sum};
use core::{f32, ops::*};
#[inline(always)]
#[must_use]
pub const fn dvec4(x: f64, y: f64, z: f64, w: f64) -> DVec4 {
DVec4::new(x, y, z, w)
}
#[derive(Clone, Copy, PartialEq)]
#[cfg_attr(feature = "cuda", repr(align(16)))]
#[cfg_attr(not(target_arch = "spirv"), repr(C))]
#[cfg_attr(target_arch = "spirv", repr(simd))]
pub struct DVec4 {
pub x: f64,
pub y: f64,
pub z: f64,
pub w: f64,
}
impl DVec4 {
pub const ZERO: Self = Self::splat(0.0);
pub const ONE: Self = Self::splat(1.0);
pub const NEG_ONE: Self = Self::splat(-1.0);
pub const MIN: Self = Self::splat(f64::MIN);
pub const MAX: Self = Self::splat(f64::MAX);
pub const NAN: Self = Self::splat(f64::NAN);
pub const INFINITY: Self = Self::splat(f64::INFINITY);
pub const NEG_INFINITY: Self = Self::splat(f64::NEG_INFINITY);
pub const X: Self = Self::new(1.0, 0.0, 0.0, 0.0);
pub const Y: Self = Self::new(0.0, 1.0, 0.0, 0.0);
pub const Z: Self = Self::new(0.0, 0.0, 1.0, 0.0);
pub const W: Self = Self::new(0.0, 0.0, 0.0, 1.0);
pub const NEG_X: Self = Self::new(-1.0, 0.0, 0.0, 0.0);
pub const NEG_Y: Self = Self::new(0.0, -1.0, 0.0, 0.0);
pub const NEG_Z: Self = Self::new(0.0, 0.0, -1.0, 0.0);
pub const NEG_W: Self = Self::new(0.0, 0.0, 0.0, -1.0);
pub const AXES: [Self; 4] = [Self::X, Self::Y, Self::Z, Self::W];
#[inline(always)]
#[must_use]
pub const fn new(x: f64, y: f64, z: f64, w: f64) -> Self {
Self { x, y, z, w }
}
#[inline]
#[must_use]
pub const fn splat(v: f64) -> Self {
Self {
x: v,
y: v,
z: v,
w: v,
}
}
#[inline]
#[must_use]
pub fn map<F>(self, f: F) -> Self
where
F: Fn(f64) -> f64,
{
Self::new(f(self.x), f(self.y), f(self.z), f(self.w))
}
#[inline]
#[must_use]
pub fn select(mask: BVec4, if_true: Self, if_false: Self) -> Self {
Self {
x: if mask.test(0) { if_true.x } else { if_false.x },
y: if mask.test(1) { if_true.y } else { if_false.y },
z: if mask.test(2) { if_true.z } else { if_false.z },
w: if mask.test(3) { if_true.w } else { if_false.w },
}
}
#[inline]
#[must_use]
pub const fn from_array(a: [f64; 4]) -> Self {
Self::new(a[0], a[1], a[2], a[3])
}
#[inline]
#[must_use]
pub const fn to_array(&self) -> [f64; 4] {
[self.x, self.y, self.z, self.w]
}
#[inline]
#[must_use]
pub const fn from_slice(slice: &[f64]) -> Self {
assert!(slice.len() >= 4);
Self::new(slice[0], slice[1], slice[2], slice[3])
}
#[inline]
pub fn write_to_slice(self, slice: &mut [f64]) {
slice[..4].copy_from_slice(&self.to_array());
}
#[inline]
#[must_use]
pub fn truncate(self) -> DVec3 {
use crate::swizzles::Vec4Swizzles;
self.xyz()
}
#[inline]
#[must_use]
pub fn with_x(mut self, x: f64) -> Self {
self.x = x;
self
}
#[inline]
#[must_use]
pub fn with_y(mut self, y: f64) -> Self {
self.y = y;
self
}
#[inline]
#[must_use]
pub fn with_z(mut self, z: f64) -> Self {
self.z = z;
self
}
#[inline]
#[must_use]
pub fn with_w(mut self, w: f64) -> Self {
self.w = w;
self
}
#[inline]
#[must_use]
pub fn dot(self, rhs: Self) -> f64 {
(self.x * rhs.x) + (self.y * rhs.y) + (self.z * rhs.z) + (self.w * rhs.w)
}
#[inline]
#[must_use]
pub fn dot_into_vec(self, rhs: Self) -> Self {
Self::splat(self.dot(rhs))
}
#[inline]
#[must_use]
pub fn min(self, rhs: Self) -> Self {
Self {
x: self.x.min(rhs.x),
y: self.y.min(rhs.y),
z: self.z.min(rhs.z),
w: self.w.min(rhs.w),
}
}
#[inline]
#[must_use]
pub fn max(self, rhs: Self) -> Self {
Self {
x: self.x.max(rhs.x),
y: self.y.max(rhs.y),
z: self.z.max(rhs.z),
w: self.w.max(rhs.w),
}
}
#[inline]
#[must_use]
pub fn clamp(self, min: Self, max: Self) -> Self {
glam_assert!(min.cmple(max).all(), "clamp: expected min <= max");
self.max(min).min(max)
}
#[inline]
#[must_use]
pub fn min_element(self) -> f64 {
self.x.min(self.y.min(self.z.min(self.w)))
}
#[inline]
#[must_use]
pub fn max_element(self) -> f64 {
self.x.max(self.y.max(self.z.max(self.w)))
}
#[inline]
#[must_use]
pub fn element_sum(self) -> f64 {
self.x + self.y + self.z + self.w
}
#[inline]
#[must_use]
pub fn element_product(self) -> f64 {
self.x * self.y * self.z * self.w
}
#[inline]
#[must_use]
pub fn cmpeq(self, rhs: Self) -> BVec4 {
BVec4::new(
self.x.eq(&rhs.x),
self.y.eq(&rhs.y),
self.z.eq(&rhs.z),
self.w.eq(&rhs.w),
)
}
#[inline]
#[must_use]
pub fn cmpne(self, rhs: Self) -> BVec4 {
BVec4::new(
self.x.ne(&rhs.x),
self.y.ne(&rhs.y),
self.z.ne(&rhs.z),
self.w.ne(&rhs.w),
)
}
#[inline]
#[must_use]
pub fn cmpge(self, rhs: Self) -> BVec4 {
BVec4::new(
self.x.ge(&rhs.x),
self.y.ge(&rhs.y),
self.z.ge(&rhs.z),
self.w.ge(&rhs.w),
)
}
#[inline]
#[must_use]
pub fn cmpgt(self, rhs: Self) -> BVec4 {
BVec4::new(
self.x.gt(&rhs.x),
self.y.gt(&rhs.y),
self.z.gt(&rhs.z),
self.w.gt(&rhs.w),
)
}
#[inline]
#[must_use]
pub fn cmple(self, rhs: Self) -> BVec4 {
BVec4::new(
self.x.le(&rhs.x),
self.y.le(&rhs.y),
self.z.le(&rhs.z),
self.w.le(&rhs.w),
)
}
#[inline]
#[must_use]
pub fn cmplt(self, rhs: Self) -> BVec4 {
BVec4::new(
self.x.lt(&rhs.x),
self.y.lt(&rhs.y),
self.z.lt(&rhs.z),
self.w.lt(&rhs.w),
)
}
#[inline]
#[must_use]
pub fn abs(self) -> Self {
Self {
x: math::abs(self.x),
y: math::abs(self.y),
z: math::abs(self.z),
w: math::abs(self.w),
}
}
#[inline]
#[must_use]
pub fn signum(self) -> Self {
Self {
x: math::signum(self.x),
y: math::signum(self.y),
z: math::signum(self.z),
w: math::signum(self.w),
}
}
#[inline]
#[must_use]
pub fn copysign(self, rhs: Self) -> Self {
Self {
x: math::copysign(self.x, rhs.x),
y: math::copysign(self.y, rhs.y),
z: math::copysign(self.z, rhs.z),
w: math::copysign(self.w, rhs.w),
}
}
#[inline]
#[must_use]
pub fn is_negative_bitmask(self) -> u32 {
(self.x.is_sign_negative() as u32)
| ((self.y.is_sign_negative() as u32) << 1)
| ((self.z.is_sign_negative() as u32) << 2)
| ((self.w.is_sign_negative() as u32) << 3)
}
#[inline]
#[must_use]
pub fn is_finite(self) -> bool {
self.x.is_finite() && self.y.is_finite() && self.z.is_finite() && self.w.is_finite()
}
pub fn is_finite_mask(self) -> BVec4 {
BVec4::new(
self.x.is_finite(),
self.y.is_finite(),
self.z.is_finite(),
self.w.is_finite(),
)
}
#[inline]
#[must_use]
pub fn is_nan(self) -> bool {
self.x.is_nan() || self.y.is_nan() || self.z.is_nan() || self.w.is_nan()
}
#[inline]
#[must_use]
pub fn is_nan_mask(self) -> BVec4 {
BVec4::new(
self.x.is_nan(),
self.y.is_nan(),
self.z.is_nan(),
self.w.is_nan(),
)
}
#[doc(alias = "magnitude")]
#[inline]
#[must_use]
pub fn length(self) -> f64 {
math::sqrt(self.dot(self))
}
#[doc(alias = "magnitude2")]
#[inline]
#[must_use]
pub fn length_squared(self) -> f64 {
self.dot(self)
}
#[inline]
#[must_use]
pub fn length_recip(self) -> f64 {
self.length().recip()
}
#[inline]
#[must_use]
pub fn distance(self, rhs: Self) -> f64 {
(self - rhs).length()
}
#[inline]
#[must_use]
pub fn distance_squared(self, rhs: Self) -> f64 {
(self - rhs).length_squared()
}
#[inline]
#[must_use]
pub fn div_euclid(self, rhs: Self) -> Self {
Self::new(
math::div_euclid(self.x, rhs.x),
math::div_euclid(self.y, rhs.y),
math::div_euclid(self.z, rhs.z),
math::div_euclid(self.w, rhs.w),
)
}
#[inline]
#[must_use]
pub fn rem_euclid(self, rhs: Self) -> Self {
Self::new(
math::rem_euclid(self.x, rhs.x),
math::rem_euclid(self.y, rhs.y),
math::rem_euclid(self.z, rhs.z),
math::rem_euclid(self.w, rhs.w),
)
}
#[inline]
#[must_use]
pub fn normalize(self) -> Self {
#[allow(clippy::let_and_return)]
let normalized = self.mul(self.length_recip());
glam_assert!(normalized.is_finite());
normalized
}
#[inline]
#[must_use]
pub fn try_normalize(self) -> Option<Self> {
let rcp = self.length_recip();
if rcp.is_finite() && rcp > 0.0 {
Some(self * rcp)
} else {
None
}
}
#[inline]
#[must_use]
pub fn normalize_or(self, fallback: Self) -> Self {
let rcp = self.length_recip();
if rcp.is_finite() && rcp > 0.0 {
self * rcp
} else {
fallback
}
}
#[inline]
#[must_use]
pub fn normalize_or_zero(self) -> Self {
self.normalize_or(Self::ZERO)
}
#[inline]
#[must_use]
pub fn is_normalized(self) -> bool {
math::abs(self.length_squared() - 1.0) <= 2e-4
}
#[inline]
#[must_use]
pub fn project_onto(self, rhs: Self) -> Self {
let other_len_sq_rcp = rhs.dot(rhs).recip();
glam_assert!(other_len_sq_rcp.is_finite());
rhs * self.dot(rhs) * other_len_sq_rcp
}
#[doc(alias("plane"))]
#[inline]
#[must_use]
pub fn reject_from(self, rhs: Self) -> Self {
self - self.project_onto(rhs)
}
#[inline]
#[must_use]
pub fn project_onto_normalized(self, rhs: Self) -> Self {
glam_assert!(rhs.is_normalized());
rhs * self.dot(rhs)
}
#[doc(alias("plane"))]
#[inline]
#[must_use]
pub fn reject_from_normalized(self, rhs: Self) -> Self {
self - self.project_onto_normalized(rhs)
}
#[inline]
#[must_use]
pub fn round(self) -> Self {
Self {
x: math::round(self.x),
y: math::round(self.y),
z: math::round(self.z),
w: math::round(self.w),
}
}
#[inline]
#[must_use]
pub fn floor(self) -> Self {
Self {
x: math::floor(self.x),
y: math::floor(self.y),
z: math::floor(self.z),
w: math::floor(self.w),
}
}
#[inline]
#[must_use]
pub fn ceil(self) -> Self {
Self {
x: math::ceil(self.x),
y: math::ceil(self.y),
z: math::ceil(self.z),
w: math::ceil(self.w),
}
}
#[inline]
#[must_use]
pub fn trunc(self) -> Self {
Self {
x: math::trunc(self.x),
y: math::trunc(self.y),
z: math::trunc(self.z),
w: math::trunc(self.w),
}
}
#[inline]
#[must_use]
pub fn fract(self) -> Self {
self - self.trunc()
}
#[inline]
#[must_use]
pub fn fract_gl(self) -> Self {
self - self.floor()
}
#[inline]
#[must_use]
pub fn exp(self) -> Self {
Self::new(
math::exp(self.x),
math::exp(self.y),
math::exp(self.z),
math::exp(self.w),
)
}
#[inline]
#[must_use]
pub fn powf(self, n: f64) -> Self {
Self::new(
math::powf(self.x, n),
math::powf(self.y, n),
math::powf(self.z, n),
math::powf(self.w, n),
)
}
#[inline]
#[must_use]
pub fn recip(self) -> Self {
Self {
x: 1.0 / self.x,
y: 1.0 / self.y,
z: 1.0 / self.z,
w: 1.0 / self.w,
}
}
#[doc(alias = "mix")]
#[inline]
#[must_use]
pub fn lerp(self, rhs: Self, s: f64) -> Self {
self * (1.0 - s) + rhs * s
}
#[inline]
#[must_use]
pub fn move_towards(&self, rhs: Self, d: f64) -> Self {
let a = rhs - *self;
let len = a.length();
if len <= d || len <= 1e-4 {
return rhs;
}
*self + a / len * d
}
#[inline]
pub fn midpoint(self, rhs: Self) -> Self {
(self + rhs) * 0.5
}
#[inline]
#[must_use]
pub fn abs_diff_eq(self, rhs: Self, max_abs_diff: f64) -> bool {
self.sub(rhs).abs().cmple(Self::splat(max_abs_diff)).all()
}
#[inline]
#[must_use]
pub fn clamp_length(self, min: f64, max: f64) -> Self {
glam_assert!(0.0 <= min);
glam_assert!(min <= max);
let length_sq = self.length_squared();
if length_sq < min * min {
min * (self / math::sqrt(length_sq))
} else if length_sq > max * max {
max * (self / math::sqrt(length_sq))
} else {
self
}
}
#[inline]
#[must_use]
pub fn clamp_length_max(self, max: f64) -> Self {
glam_assert!(0.0 <= max);
let length_sq = self.length_squared();
if length_sq > max * max {
max * (self / math::sqrt(length_sq))
} else {
self
}
}
#[inline]
#[must_use]
pub fn clamp_length_min(self, min: f64) -> Self {
glam_assert!(0.0 <= min);
let length_sq = self.length_squared();
if length_sq < min * min {
min * (self / math::sqrt(length_sq))
} else {
self
}
}
#[inline]
#[must_use]
pub fn mul_add(self, a: Self, b: Self) -> Self {
Self::new(
math::mul_add(self.x, a.x, b.x),
math::mul_add(self.y, a.y, b.y),
math::mul_add(self.z, a.z, b.z),
math::mul_add(self.w, a.w, b.w),
)
}
#[inline]
#[must_use]
pub fn reflect(self, normal: Self) -> Self {
glam_assert!(normal.is_normalized());
self - 2.0 * self.dot(normal) * normal
}
#[inline]
#[must_use]
pub fn refract(self, normal: Self, eta: f64) -> Self {
glam_assert!(self.is_normalized());
glam_assert!(normal.is_normalized());
let n_dot_i = normal.dot(self);
let k = 1.0 - eta * eta * (1.0 - n_dot_i * n_dot_i);
if k >= 0.0 {
eta * self - (eta * n_dot_i + math::sqrt(k)) * normal
} else {
Self::ZERO
}
}
#[inline]
#[must_use]
pub fn as_vec4(&self) -> crate::Vec4 {
crate::Vec4::new(self.x as f32, self.y as f32, self.z as f32, self.w as f32)
}
#[inline]
#[must_use]
pub fn as_i8vec4(&self) -> crate::I8Vec4 {
crate::I8Vec4::new(self.x as i8, self.y as i8, self.z as i8, self.w as i8)
}
#[inline]
#[must_use]
pub fn as_u8vec4(&self) -> crate::U8Vec4 {
crate::U8Vec4::new(self.x as u8, self.y as u8, self.z as u8, self.w as u8)
}
#[inline]
#[must_use]
pub fn as_i16vec4(&self) -> crate::I16Vec4 {
crate::I16Vec4::new(self.x as i16, self.y as i16, self.z as i16, self.w as i16)
}
#[inline]
#[must_use]
pub fn as_u16vec4(&self) -> crate::U16Vec4 {
crate::U16Vec4::new(self.x as u16, self.y as u16, self.z as u16, self.w as u16)
}
#[inline]
#[must_use]
pub fn as_ivec4(&self) -> crate::IVec4 {
crate::IVec4::new(self.x as i32, self.y as i32, self.z as i32, self.w as i32)
}
#[inline]
#[must_use]
pub fn as_uvec4(&self) -> crate::UVec4 {
crate::UVec4::new(self.x as u32, self.y as u32, self.z as u32, self.w as u32)
}
#[inline]
#[must_use]
pub fn as_i64vec4(&self) -> crate::I64Vec4 {
crate::I64Vec4::new(self.x as i64, self.y as i64, self.z as i64, self.w as i64)
}
#[inline]
#[must_use]
pub fn as_u64vec4(&self) -> crate::U64Vec4 {
crate::U64Vec4::new(self.x as u64, self.y as u64, self.z as u64, self.w as u64)
}
}
impl Default for DVec4 {
#[inline(always)]
fn default() -> Self {
Self::ZERO
}
}
impl Div<DVec4> for DVec4 {
type Output = Self;
#[inline]
fn div(self, rhs: Self) -> Self {
Self {
x: self.x.div(rhs.x),
y: self.y.div(rhs.y),
z: self.z.div(rhs.z),
w: self.w.div(rhs.w),
}
}
}
impl Div<&DVec4> for DVec4 {
type Output = DVec4;
#[inline]
fn div(self, rhs: &DVec4) -> DVec4 {
self.div(*rhs)
}
}
impl Div<&DVec4> for &DVec4 {
type Output = DVec4;
#[inline]
fn div(self, rhs: &DVec4) -> DVec4 {
(*self).div(*rhs)
}
}
impl Div<DVec4> for &DVec4 {
type Output = DVec4;
#[inline]
fn div(self, rhs: DVec4) -> DVec4 {
(*self).div(rhs)
}
}
impl DivAssign<DVec4> for DVec4 {
#[inline]
fn div_assign(&mut self, rhs: Self) {
self.x.div_assign(rhs.x);
self.y.div_assign(rhs.y);
self.z.div_assign(rhs.z);
self.w.div_assign(rhs.w);
}
}
impl DivAssign<&Self> for DVec4 {
#[inline]
fn div_assign(&mut self, rhs: &Self) {
self.div_assign(*rhs)
}
}
impl Div<f64> for DVec4 {
type Output = Self;
#[inline]
fn div(self, rhs: f64) -> Self {
Self {
x: self.x.div(rhs),
y: self.y.div(rhs),
z: self.z.div(rhs),
w: self.w.div(rhs),
}
}
}
impl Div<&f64> for DVec4 {
type Output = DVec4;
#[inline]
fn div(self, rhs: &f64) -> DVec4 {
self.div(*rhs)
}
}
impl Div<&f64> for &DVec4 {
type Output = DVec4;
#[inline]
fn div(self, rhs: &f64) -> DVec4 {
(*self).div(*rhs)
}
}
impl Div<f64> for &DVec4 {
type Output = DVec4;
#[inline]
fn div(self, rhs: f64) -> DVec4 {
(*self).div(rhs)
}
}
impl DivAssign<f64> for DVec4 {
#[inline]
fn div_assign(&mut self, rhs: f64) {
self.x.div_assign(rhs);
self.y.div_assign(rhs);
self.z.div_assign(rhs);
self.w.div_assign(rhs);
}
}
impl DivAssign<&f64> for DVec4 {
#[inline]
fn div_assign(&mut self, rhs: &f64) {
self.div_assign(*rhs)
}
}
impl Div<DVec4> for f64 {
type Output = DVec4;
#[inline]
fn div(self, rhs: DVec4) -> DVec4 {
DVec4 {
x: self.div(rhs.x),
y: self.div(rhs.y),
z: self.div(rhs.z),
w: self.div(rhs.w),
}
}
}
impl Div<&DVec4> for f64 {
type Output = DVec4;
#[inline]
fn div(self, rhs: &DVec4) -> DVec4 {
self.div(*rhs)
}
}
impl Div<&DVec4> for &f64 {
type Output = DVec4;
#[inline]
fn div(self, rhs: &DVec4) -> DVec4 {
(*self).div(*rhs)
}
}
impl Div<DVec4> for &f64 {
type Output = DVec4;
#[inline]
fn div(self, rhs: DVec4) -> DVec4 {
(*self).div(rhs)
}
}
impl Mul<DVec4> for DVec4 {
type Output = Self;
#[inline]
fn mul(self, rhs: Self) -> Self {
Self {
x: self.x.mul(rhs.x),
y: self.y.mul(rhs.y),
z: self.z.mul(rhs.z),
w: self.w.mul(rhs.w),
}
}
}
impl Mul<&DVec4> for DVec4 {
type Output = DVec4;
#[inline]
fn mul(self, rhs: &DVec4) -> DVec4 {
self.mul(*rhs)
}
}
impl Mul<&DVec4> for &DVec4 {
type Output = DVec4;
#[inline]
fn mul(self, rhs: &DVec4) -> DVec4 {
(*self).mul(*rhs)
}
}
impl Mul<DVec4> for &DVec4 {
type Output = DVec4;
#[inline]
fn mul(self, rhs: DVec4) -> DVec4 {
(*self).mul(rhs)
}
}
impl MulAssign<DVec4> for DVec4 {
#[inline]
fn mul_assign(&mut self, rhs: Self) {
self.x.mul_assign(rhs.x);
self.y.mul_assign(rhs.y);
self.z.mul_assign(rhs.z);
self.w.mul_assign(rhs.w);
}
}
impl MulAssign<&Self> for DVec4 {
#[inline]
fn mul_assign(&mut self, rhs: &Self) {
self.mul_assign(*rhs)
}
}
impl Mul<f64> for DVec4 {
type Output = Self;
#[inline]
fn mul(self, rhs: f64) -> Self {
Self {
x: self.x.mul(rhs),
y: self.y.mul(rhs),
z: self.z.mul(rhs),
w: self.w.mul(rhs),
}
}
}
impl Mul<&f64> for DVec4 {
type Output = DVec4;
#[inline]
fn mul(self, rhs: &f64) -> DVec4 {
self.mul(*rhs)
}
}
impl Mul<&f64> for &DVec4 {
type Output = DVec4;
#[inline]
fn mul(self, rhs: &f64) -> DVec4 {
(*self).mul(*rhs)
}
}
impl Mul<f64> for &DVec4 {
type Output = DVec4;
#[inline]
fn mul(self, rhs: f64) -> DVec4 {
(*self).mul(rhs)
}
}
impl MulAssign<f64> for DVec4 {
#[inline]
fn mul_assign(&mut self, rhs: f64) {
self.x.mul_assign(rhs);
self.y.mul_assign(rhs);
self.z.mul_assign(rhs);
self.w.mul_assign(rhs);
}
}
impl MulAssign<&f64> for DVec4 {
#[inline]
fn mul_assign(&mut self, rhs: &f64) {
self.mul_assign(*rhs)
}
}
impl Mul<DVec4> for f64 {
type Output = DVec4;
#[inline]
fn mul(self, rhs: DVec4) -> DVec4 {
DVec4 {
x: self.mul(rhs.x),
y: self.mul(rhs.y),
z: self.mul(rhs.z),
w: self.mul(rhs.w),
}
}
}
impl Mul<&DVec4> for f64 {
type Output = DVec4;
#[inline]
fn mul(self, rhs: &DVec4) -> DVec4 {
self.mul(*rhs)
}
}
impl Mul<&DVec4> for &f64 {
type Output = DVec4;
#[inline]
fn mul(self, rhs: &DVec4) -> DVec4 {
(*self).mul(*rhs)
}
}
impl Mul<DVec4> for &f64 {
type Output = DVec4;
#[inline]
fn mul(self, rhs: DVec4) -> DVec4 {
(*self).mul(rhs)
}
}
impl Add<DVec4> for DVec4 {
type Output = Self;
#[inline]
fn add(self, rhs: Self) -> Self {
Self {
x: self.x.add(rhs.x),
y: self.y.add(rhs.y),
z: self.z.add(rhs.z),
w: self.w.add(rhs.w),
}
}
}
impl Add<&DVec4> for DVec4 {
type Output = DVec4;
#[inline]
fn add(self, rhs: &DVec4) -> DVec4 {
self.add(*rhs)
}
}
impl Add<&DVec4> for &DVec4 {
type Output = DVec4;
#[inline]
fn add(self, rhs: &DVec4) -> DVec4 {
(*self).add(*rhs)
}
}
impl Add<DVec4> for &DVec4 {
type Output = DVec4;
#[inline]
fn add(self, rhs: DVec4) -> DVec4 {
(*self).add(rhs)
}
}
impl AddAssign<DVec4> for DVec4 {
#[inline]
fn add_assign(&mut self, rhs: Self) {
self.x.add_assign(rhs.x);
self.y.add_assign(rhs.y);
self.z.add_assign(rhs.z);
self.w.add_assign(rhs.w);
}
}
impl AddAssign<&Self> for DVec4 {
#[inline]
fn add_assign(&mut self, rhs: &Self) {
self.add_assign(*rhs)
}
}
impl Add<f64> for DVec4 {
type Output = Self;
#[inline]
fn add(self, rhs: f64) -> Self {
Self {
x: self.x.add(rhs),
y: self.y.add(rhs),
z: self.z.add(rhs),
w: self.w.add(rhs),
}
}
}
impl Add<&f64> for DVec4 {
type Output = DVec4;
#[inline]
fn add(self, rhs: &f64) -> DVec4 {
self.add(*rhs)
}
}
impl Add<&f64> for &DVec4 {
type Output = DVec4;
#[inline]
fn add(self, rhs: &f64) -> DVec4 {
(*self).add(*rhs)
}
}
impl Add<f64> for &DVec4 {
type Output = DVec4;
#[inline]
fn add(self, rhs: f64) -> DVec4 {
(*self).add(rhs)
}
}
impl AddAssign<f64> for DVec4 {
#[inline]
fn add_assign(&mut self, rhs: f64) {
self.x.add_assign(rhs);
self.y.add_assign(rhs);
self.z.add_assign(rhs);
self.w.add_assign(rhs);
}
}
impl AddAssign<&f64> for DVec4 {
#[inline]
fn add_assign(&mut self, rhs: &f64) {
self.add_assign(*rhs)
}
}
impl Add<DVec4> for f64 {
type Output = DVec4;
#[inline]
fn add(self, rhs: DVec4) -> DVec4 {
DVec4 {
x: self.add(rhs.x),
y: self.add(rhs.y),
z: self.add(rhs.z),
w: self.add(rhs.w),
}
}
}
impl Add<&DVec4> for f64 {
type Output = DVec4;
#[inline]
fn add(self, rhs: &DVec4) -> DVec4 {
self.add(*rhs)
}
}
impl Add<&DVec4> for &f64 {
type Output = DVec4;
#[inline]
fn add(self, rhs: &DVec4) -> DVec4 {
(*self).add(*rhs)
}
}
impl Add<DVec4> for &f64 {
type Output = DVec4;
#[inline]
fn add(self, rhs: DVec4) -> DVec4 {
(*self).add(rhs)
}
}
impl Sub<DVec4> for DVec4 {
type Output = Self;
#[inline]
fn sub(self, rhs: Self) -> Self {
Self {
x: self.x.sub(rhs.x),
y: self.y.sub(rhs.y),
z: self.z.sub(rhs.z),
w: self.w.sub(rhs.w),
}
}
}
impl Sub<&DVec4> for DVec4 {
type Output = DVec4;
#[inline]
fn sub(self, rhs: &DVec4) -> DVec4 {
self.sub(*rhs)
}
}
impl Sub<&DVec4> for &DVec4 {
type Output = DVec4;
#[inline]
fn sub(self, rhs: &DVec4) -> DVec4 {
(*self).sub(*rhs)
}
}
impl Sub<DVec4> for &DVec4 {
type Output = DVec4;
#[inline]
fn sub(self, rhs: DVec4) -> DVec4 {
(*self).sub(rhs)
}
}
impl SubAssign<DVec4> for DVec4 {
#[inline]
fn sub_assign(&mut self, rhs: DVec4) {
self.x.sub_assign(rhs.x);
self.y.sub_assign(rhs.y);
self.z.sub_assign(rhs.z);
self.w.sub_assign(rhs.w);
}
}
impl SubAssign<&Self> for DVec4 {
#[inline]
fn sub_assign(&mut self, rhs: &Self) {
self.sub_assign(*rhs)
}
}
impl Sub<f64> for DVec4 {
type Output = Self;
#[inline]
fn sub(self, rhs: f64) -> Self {
Self {
x: self.x.sub(rhs),
y: self.y.sub(rhs),
z: self.z.sub(rhs),
w: self.w.sub(rhs),
}
}
}
impl Sub<&f64> for DVec4 {
type Output = DVec4;
#[inline]
fn sub(self, rhs: &f64) -> DVec4 {
self.sub(*rhs)
}
}
impl Sub<&f64> for &DVec4 {
type Output = DVec4;
#[inline]
fn sub(self, rhs: &f64) -> DVec4 {
(*self).sub(*rhs)
}
}
impl Sub<f64> for &DVec4 {
type Output = DVec4;
#[inline]
fn sub(self, rhs: f64) -> DVec4 {
(*self).sub(rhs)
}
}
impl SubAssign<f64> for DVec4 {
#[inline]
fn sub_assign(&mut self, rhs: f64) {
self.x.sub_assign(rhs);
self.y.sub_assign(rhs);
self.z.sub_assign(rhs);
self.w.sub_assign(rhs);
}
}
impl SubAssign<&f64> for DVec4 {
#[inline]
fn sub_assign(&mut self, rhs: &f64) {
self.sub_assign(*rhs)
}
}
impl Sub<DVec4> for f64 {
type Output = DVec4;
#[inline]
fn sub(self, rhs: DVec4) -> DVec4 {
DVec4 {
x: self.sub(rhs.x),
y: self.sub(rhs.y),
z: self.sub(rhs.z),
w: self.sub(rhs.w),
}
}
}
impl Sub<&DVec4> for f64 {
type Output = DVec4;
#[inline]
fn sub(self, rhs: &DVec4) -> DVec4 {
self.sub(*rhs)
}
}
impl Sub<&DVec4> for &f64 {
type Output = DVec4;
#[inline]
fn sub(self, rhs: &DVec4) -> DVec4 {
(*self).sub(*rhs)
}
}
impl Sub<DVec4> for &f64 {
type Output = DVec4;
#[inline]
fn sub(self, rhs: DVec4) -> DVec4 {
(*self).sub(rhs)
}
}
impl Rem<DVec4> for DVec4 {
type Output = Self;
#[inline]
fn rem(self, rhs: Self) -> Self {
Self {
x: self.x.rem(rhs.x),
y: self.y.rem(rhs.y),
z: self.z.rem(rhs.z),
w: self.w.rem(rhs.w),
}
}
}
impl Rem<&DVec4> for DVec4 {
type Output = DVec4;
#[inline]
fn rem(self, rhs: &DVec4) -> DVec4 {
self.rem(*rhs)
}
}
impl Rem<&DVec4> for &DVec4 {
type Output = DVec4;
#[inline]
fn rem(self, rhs: &DVec4) -> DVec4 {
(*self).rem(*rhs)
}
}
impl Rem<DVec4> for &DVec4 {
type Output = DVec4;
#[inline]
fn rem(self, rhs: DVec4) -> DVec4 {
(*self).rem(rhs)
}
}
impl RemAssign<DVec4> for DVec4 {
#[inline]
fn rem_assign(&mut self, rhs: Self) {
self.x.rem_assign(rhs.x);
self.y.rem_assign(rhs.y);
self.z.rem_assign(rhs.z);
self.w.rem_assign(rhs.w);
}
}
impl RemAssign<&Self> for DVec4 {
#[inline]
fn rem_assign(&mut self, rhs: &Self) {
self.rem_assign(*rhs)
}
}
impl Rem<f64> for DVec4 {
type Output = Self;
#[inline]
fn rem(self, rhs: f64) -> Self {
Self {
x: self.x.rem(rhs),
y: self.y.rem(rhs),
z: self.z.rem(rhs),
w: self.w.rem(rhs),
}
}
}
impl Rem<&f64> for DVec4 {
type Output = DVec4;
#[inline]
fn rem(self, rhs: &f64) -> DVec4 {
self.rem(*rhs)
}
}
impl Rem<&f64> for &DVec4 {
type Output = DVec4;
#[inline]
fn rem(self, rhs: &f64) -> DVec4 {
(*self).rem(*rhs)
}
}
impl Rem<f64> for &DVec4 {
type Output = DVec4;
#[inline]
fn rem(self, rhs: f64) -> DVec4 {
(*self).rem(rhs)
}
}
impl RemAssign<f64> for DVec4 {
#[inline]
fn rem_assign(&mut self, rhs: f64) {
self.x.rem_assign(rhs);
self.y.rem_assign(rhs);
self.z.rem_assign(rhs);
self.w.rem_assign(rhs);
}
}
impl RemAssign<&f64> for DVec4 {
#[inline]
fn rem_assign(&mut self, rhs: &f64) {
self.rem_assign(*rhs)
}
}
impl Rem<DVec4> for f64 {
type Output = DVec4;
#[inline]
fn rem(self, rhs: DVec4) -> DVec4 {
DVec4 {
x: self.rem(rhs.x),
y: self.rem(rhs.y),
z: self.rem(rhs.z),
w: self.rem(rhs.w),
}
}
}
impl Rem<&DVec4> for f64 {
type Output = DVec4;
#[inline]
fn rem(self, rhs: &DVec4) -> DVec4 {
self.rem(*rhs)
}
}
impl Rem<&DVec4> for &f64 {
type Output = DVec4;
#[inline]
fn rem(self, rhs: &DVec4) -> DVec4 {
(*self).rem(*rhs)
}
}
impl Rem<DVec4> for &f64 {
type Output = DVec4;
#[inline]
fn rem(self, rhs: DVec4) -> DVec4 {
(*self).rem(rhs)
}
}
#[cfg(not(target_arch = "spirv"))]
impl AsRef<[f64; 4]> for DVec4 {
#[inline]
fn as_ref(&self) -> &[f64; 4] {
unsafe { &*(self as *const DVec4 as *const [f64; 4]) }
}
}
#[cfg(not(target_arch = "spirv"))]
impl AsMut<[f64; 4]> for DVec4 {
#[inline]
fn as_mut(&mut self) -> &mut [f64; 4] {
unsafe { &mut *(self as *mut DVec4 as *mut [f64; 4]) }
}
}
impl Sum for DVec4 {
#[inline]
fn sum<I>(iter: I) -> Self
where
I: Iterator<Item = Self>,
{
iter.fold(Self::ZERO, Self::add)
}
}
impl<'a> Sum<&'a Self> for DVec4 {
#[inline]
fn sum<I>(iter: I) -> Self
where
I: Iterator<Item = &'a Self>,
{
iter.fold(Self::ZERO, |a, &b| Self::add(a, b))
}
}
impl Product for DVec4 {
#[inline]
fn product<I>(iter: I) -> Self
where
I: Iterator<Item = Self>,
{
iter.fold(Self::ONE, Self::mul)
}
}
impl<'a> Product<&'a Self> for DVec4 {
#[inline]
fn product<I>(iter: I) -> Self
where
I: Iterator<Item = &'a Self>,
{
iter.fold(Self::ONE, |a, &b| Self::mul(a, b))
}
}
impl Neg for DVec4 {
type Output = Self;
#[inline]
fn neg(self) -> Self {
Self {
x: self.x.neg(),
y: self.y.neg(),
z: self.z.neg(),
w: self.w.neg(),
}
}
}
impl Neg for &DVec4 {
type Output = DVec4;
#[inline]
fn neg(self) -> DVec4 {
(*self).neg()
}
}
impl Index<usize> for DVec4 {
type Output = f64;
#[inline]
fn index(&self, index: usize) -> &Self::Output {
match index {
0 => &self.x,
1 => &self.y,
2 => &self.z,
3 => &self.w,
_ => panic!("index out of bounds"),
}
}
}
impl IndexMut<usize> for DVec4 {
#[inline]
fn index_mut(&mut self, index: usize) -> &mut Self::Output {
match index {
0 => &mut self.x,
1 => &mut self.y,
2 => &mut self.z,
3 => &mut self.w,
_ => panic!("index out of bounds"),
}
}
}
impl fmt::Display for DVec4 {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
if let Some(p) = f.precision() {
write!(
f,
"[{:.*}, {:.*}, {:.*}, {:.*}]",
p, self.x, p, self.y, p, self.z, p, self.w
)
} else {
write!(f, "[{}, {}, {}, {}]", self.x, self.y, self.z, self.w)
}
}
}
impl fmt::Debug for DVec4 {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt.debug_tuple(stringify!(DVec4))
.field(&self.x)
.field(&self.y)
.field(&self.z)
.field(&self.w)
.finish()
}
}
impl From<[f64; 4]> for DVec4 {
#[inline]
fn from(a: [f64; 4]) -> Self {
Self::new(a[0], a[1], a[2], a[3])
}
}
impl From<DVec4> for [f64; 4] {
#[inline]
fn from(v: DVec4) -> Self {
[v.x, v.y, v.z, v.w]
}
}
impl From<(f64, f64, f64, f64)> for DVec4 {
#[inline]
fn from(t: (f64, f64, f64, f64)) -> Self {
Self::new(t.0, t.1, t.2, t.3)
}
}
impl From<DVec4> for (f64, f64, f64, f64) {
#[inline]
fn from(v: DVec4) -> Self {
(v.x, v.y, v.z, v.w)
}
}
impl From<(DVec3, f64)> for DVec4 {
#[inline]
fn from((v, w): (DVec3, f64)) -> Self {
Self::new(v.x, v.y, v.z, w)
}
}
impl From<(f64, DVec3)> for DVec4 {
#[inline]
fn from((x, v): (f64, DVec3)) -> Self {
Self::new(x, v.x, v.y, v.z)
}
}
impl From<(DVec2, f64, f64)> for DVec4 {
#[inline]
fn from((v, z, w): (DVec2, f64, f64)) -> Self {
Self::new(v.x, v.y, z, w)
}
}
impl From<(DVec2, DVec2)> for DVec4 {
#[inline]
fn from((v, u): (DVec2, DVec2)) -> Self {
Self::new(v.x, v.y, u.x, u.y)
}
}
impl From<Vec4> for DVec4 {
#[inline]
fn from(v: Vec4) -> Self {
Self::new(
f64::from(v.x),
f64::from(v.y),
f64::from(v.z),
f64::from(v.w),
)
}
}
impl From<IVec4> for DVec4 {
#[inline]
fn from(v: IVec4) -> Self {
Self::new(
f64::from(v.x),
f64::from(v.y),
f64::from(v.z),
f64::from(v.w),
)
}
}
impl From<UVec4> for DVec4 {
#[inline]
fn from(v: UVec4) -> Self {
Self::new(
f64::from(v.x),
f64::from(v.y),
f64::from(v.z),
f64::from(v.w),
)
}
}
impl From<BVec4> for DVec4 {
#[inline]
fn from(v: BVec4) -> Self {
Self::new(
f64::from(v.x),
f64::from(v.y),
f64::from(v.z),
f64::from(v.w),
)
}
}
#[cfg(not(feature = "scalar-math"))]
impl From<BVec4A> for DVec4 {
#[inline]
fn from(v: BVec4A) -> Self {
let bool_array: [bool; 4] = v.into();
Self::new(
f64::from(bool_array[0]),
f64::from(bool_array[1]),
f64::from(bool_array[2]),
f64::from(bool_array[3]),
)
}
}