use crate::{BVec3, Vec2, Vec3, Vec4};
#[cfg(not(target_arch = "spirv"))]
use core::fmt;
use core::iter::{Product, Sum};
use core::{f32, ops::*};
#[cfg(feature = "libm")]
#[allow(unused_imports)]
use num_traits::Float;
#[inline(always)]
pub const fn vec3a(x: f32, y: f32, z: f32) -> Vec3A {
Vec3A::new(x, y, z)
}
#[derive(Clone, Copy, PartialEq)]
#[cfg_attr(not(target_arch = "spirv"), repr(align(16)))]
#[cfg_attr(not(target_arch = "spirv"), repr(C))]
#[cfg_attr(target_arch = "spirv", repr(simd))]
pub struct Vec3A {
pub x: f32,
pub y: f32,
pub z: f32,
}
impl Vec3A {
pub const ZERO: Self = Self::splat(0.0);
pub const ONE: Self = Self::splat(1.0);
pub const NEG_ONE: Self = Self::splat(-1.0);
pub const NAN: Self = Self::splat(f32::NAN);
pub const X: Self = Self::new(1.0, 0.0, 0.0);
pub const Y: Self = Self::new(0.0, 1.0, 0.0);
pub const Z: Self = Self::new(0.0, 0.0, 1.0);
pub const NEG_X: Self = Self::new(-1.0, 0.0, 0.0);
pub const NEG_Y: Self = Self::new(0.0, -1.0, 0.0);
pub const NEG_Z: Self = Self::new(0.0, 0.0, -1.0);
pub const AXES: [Self; 3] = [Self::X, Self::Y, Self::Z];
#[inline(always)]
pub const fn new(x: f32, y: f32, z: f32) -> Self {
Self { x, y, z }
}
#[inline]
pub const fn splat(v: f32) -> Self {
Self { x: v, y: v, z: v }
}
#[inline]
pub fn select(mask: BVec3, if_true: Self, if_false: Self) -> Self {
Self {
x: if mask.x { if_true.x } else { if_false.x },
y: if mask.y { if_true.y } else { if_false.y },
z: if mask.z { if_true.z } else { if_false.z },
}
}
#[inline]
pub const fn from_array(a: [f32; 3]) -> Self {
Self::new(a[0], a[1], a[2])
}
#[inline]
pub const fn to_array(&self) -> [f32; 3] {
[self.x, self.y, self.z]
}
#[inline]
pub const fn from_slice(slice: &[f32]) -> Self {
Self::new(slice[0], slice[1], slice[2])
}
#[inline]
pub fn write_to_slice(self, slice: &mut [f32]) {
slice[0] = self.x;
slice[1] = self.y;
slice[2] = self.z;
}
#[allow(dead_code)]
#[inline]
pub(crate) fn from_vec4(v: Vec4) -> Self {
Self {
x: v.x,
y: v.y,
z: v.z,
}
}
#[inline]
pub fn extend(self, w: f32) -> Vec4 {
Vec4::new(self.x, self.y, self.z, w)
}
#[inline]
pub fn truncate(self) -> Vec2 {
use crate::swizzles::Vec3Swizzles;
self.xy()
}
#[inline]
pub fn dot(self, rhs: Self) -> f32 {
(self.x * rhs.x) + (self.y * rhs.y) + (self.z * rhs.z)
}
#[inline]
pub fn cross(self, rhs: Self) -> Self {
Self {
x: self.y * rhs.z - rhs.y * self.z,
y: self.z * rhs.x - rhs.z * self.x,
z: self.x * rhs.y - rhs.x * self.y,
}
}
#[inline]
pub fn min(self, rhs: Self) -> Self {
Self {
x: self.x.min(rhs.x),
y: self.y.min(rhs.y),
z: self.z.min(rhs.z),
}
}
#[inline]
pub fn max(self, rhs: Self) -> Self {
Self {
x: self.x.max(rhs.x),
y: self.y.max(rhs.y),
z: self.z.max(rhs.z),
}
}
#[inline]
pub fn clamp(self, min: Self, max: Self) -> Self {
glam_assert!(min.cmple(max).all(), "clamp: expected min <= max");
self.max(min).min(max)
}
#[inline]
pub fn min_element(self) -> f32 {
self.x.min(self.y.min(self.z))
}
#[inline]
pub fn max_element(self) -> f32 {
self.x.max(self.y.max(self.z))
}
#[inline]
pub fn cmpeq(self, rhs: Self) -> BVec3 {
BVec3::new(self.x.eq(&rhs.x), self.y.eq(&rhs.y), self.z.eq(&rhs.z))
}
#[inline]
pub fn cmpne(self, rhs: Self) -> BVec3 {
BVec3::new(self.x.ne(&rhs.x), self.y.ne(&rhs.y), self.z.ne(&rhs.z))
}
#[inline]
pub fn cmpge(self, rhs: Self) -> BVec3 {
BVec3::new(self.x.ge(&rhs.x), self.y.ge(&rhs.y), self.z.ge(&rhs.z))
}
#[inline]
pub fn cmpgt(self, rhs: Self) -> BVec3 {
BVec3::new(self.x.gt(&rhs.x), self.y.gt(&rhs.y), self.z.gt(&rhs.z))
}
#[inline]
pub fn cmple(self, rhs: Self) -> BVec3 {
BVec3::new(self.x.le(&rhs.x), self.y.le(&rhs.y), self.z.le(&rhs.z))
}
#[inline]
pub fn cmplt(self, rhs: Self) -> BVec3 {
BVec3::new(self.x.lt(&rhs.x), self.y.lt(&rhs.y), self.z.lt(&rhs.z))
}
#[inline]
pub fn abs(self) -> Self {
Self {
x: self.x.abs(),
y: self.y.abs(),
z: self.z.abs(),
}
}
#[inline]
pub fn signum(self) -> Self {
Self {
x: self.x.signum(),
y: self.y.signum(),
z: self.z.signum(),
}
}
#[inline]
pub fn is_finite(self) -> bool {
self.x.is_finite() && self.y.is_finite() && self.z.is_finite()
}
#[inline]
pub fn is_nan(self) -> bool {
self.x.is_nan() || self.y.is_nan() || self.z.is_nan()
}
#[inline]
pub fn is_nan_mask(self) -> BVec3 {
BVec3::new(self.x.is_nan(), self.y.is_nan(), self.z.is_nan())
}
#[doc(alias = "magnitude")]
#[inline]
pub fn length(self) -> f32 {
self.dot(self).sqrt()
}
#[doc(alias = "magnitude2")]
#[inline]
pub fn length_squared(self) -> f32 {
self.dot(self)
}
#[inline]
pub fn length_recip(self) -> f32 {
self.length().recip()
}
#[inline]
pub fn distance(self, rhs: Self) -> f32 {
(self - rhs).length()
}
#[inline]
pub fn distance_squared(self, rhs: Self) -> f32 {
(self - rhs).length_squared()
}
#[must_use]
#[inline]
pub fn normalize(self) -> Self {
#[allow(clippy::let_and_return)]
let normalized = self.mul(self.length_recip());
glam_assert!(normalized.is_finite());
normalized
}
#[must_use]
#[inline]
pub fn try_normalize(self) -> Option<Self> {
let rcp = self.length_recip();
if rcp.is_finite() && rcp > 0.0 {
Some(self * rcp)
} else {
None
}
}
#[must_use]
#[inline]
pub fn normalize_or_zero(self) -> Self {
let rcp = self.length_recip();
if rcp.is_finite() && rcp > 0.0 {
self * rcp
} else {
Self::ZERO
}
}
#[inline]
pub fn is_normalized(self) -> bool {
(self.length_squared() - 1.0).abs() <= 1e-4
}
#[must_use]
#[inline]
pub fn project_onto(self, rhs: Self) -> Self {
let other_len_sq_rcp = rhs.dot(rhs).recip();
glam_assert!(other_len_sq_rcp.is_finite());
rhs * self.dot(rhs) * other_len_sq_rcp
}
#[must_use]
#[inline]
pub fn reject_from(self, rhs: Self) -> Self {
self - self.project_onto(rhs)
}
#[must_use]
#[inline]
pub fn project_onto_normalized(self, rhs: Self) -> Self {
glam_assert!(rhs.is_normalized());
rhs * self.dot(rhs)
}
#[must_use]
#[inline]
pub fn reject_from_normalized(self, rhs: Self) -> Self {
self - self.project_onto_normalized(rhs)
}
#[inline]
pub fn round(self) -> Self {
Self {
x: self.x.round(),
y: self.y.round(),
z: self.z.round(),
}
}
#[inline]
pub fn floor(self) -> Self {
Self {
x: self.x.floor(),
y: self.y.floor(),
z: self.z.floor(),
}
}
#[inline]
pub fn ceil(self) -> Self {
Self {
x: self.x.ceil(),
y: self.y.ceil(),
z: self.z.ceil(),
}
}
#[inline]
pub fn fract(self) -> Self {
self - self.floor()
}
#[inline]
pub fn exp(self) -> Self {
Self::new(self.x.exp(), self.y.exp(), self.z.exp())
}
#[inline]
pub fn powf(self, n: f32) -> Self {
Self::new(self.x.powf(n), self.y.powf(n), self.z.powf(n))
}
#[inline]
pub fn recip(self) -> Self {
Self {
x: self.x.recip(),
y: self.y.recip(),
z: self.z.recip(),
}
}
#[doc(alias = "mix")]
#[inline]
pub fn lerp(self, rhs: Self, s: f32) -> Self {
self + ((rhs - self) * s)
}
#[inline]
pub fn abs_diff_eq(self, rhs: Self, max_abs_diff: f32) -> bool {
self.sub(rhs).abs().cmple(Self::splat(max_abs_diff)).all()
}
#[inline]
pub fn clamp_length(self, min: f32, max: f32) -> Self {
glam_assert!(min <= max);
let length_sq = self.length_squared();
if length_sq < min * min {
self * (length_sq.sqrt().recip() * min)
} else if length_sq > max * max {
self * (length_sq.sqrt().recip() * max)
} else {
self
}
}
pub fn clamp_length_max(self, max: f32) -> Self {
let length_sq = self.length_squared();
if length_sq > max * max {
self * (length_sq.sqrt().recip() * max)
} else {
self
}
}
pub fn clamp_length_min(self, min: f32) -> Self {
let length_sq = self.length_squared();
if length_sq < min * min {
self * (length_sq.sqrt().recip() * min)
} else {
self
}
}
#[inline]
pub fn mul_add(self, a: Self, b: Self) -> Self {
Self::new(
self.x.mul_add(a.x, b.x),
self.y.mul_add(a.y, b.y),
self.z.mul_add(a.z, b.z),
)
}
#[inline]
pub fn angle_between(self, rhs: Self) -> f32 {
use crate::FloatEx;
self.dot(rhs)
.div(self.length_squared().mul(rhs.length_squared()).sqrt())
.acos_approx()
}
#[inline]
pub fn any_orthogonal_vector(&self) -> Self {
if self.x.abs() > self.y.abs() {
Self::new(-self.z, 0.0, self.x) } else {
Self::new(0.0, self.z, -self.y) }
}
#[inline]
pub fn any_orthonormal_vector(&self) -> Self {
glam_assert!(self.is_normalized());
#[cfg(feature = "std")]
let sign = (1.0_f32).copysign(self.z);
#[cfg(not(feature = "std"))]
let sign = self.z.signum();
let a = -1.0 / (sign + self.z);
let b = self.x * self.y * a;
Self::new(b, sign + self.y * self.y * a, -self.y)
}
#[inline]
pub fn any_orthonormal_pair(&self) -> (Self, Self) {
glam_assert!(self.is_normalized());
#[cfg(feature = "std")]
let sign = (1.0_f32).copysign(self.z);
#[cfg(not(feature = "std"))]
let sign = self.z.signum();
let a = -1.0 / (sign + self.z);
let b = self.x * self.y * a;
(
Self::new(1.0 + sign * self.x * self.x * a, sign * b, -sign * self.x),
Self::new(b, sign + self.y * self.y * a, -self.y),
)
}
#[inline]
pub fn as_dvec3(&self) -> crate::DVec3 {
crate::DVec3::new(self.x as f64, self.y as f64, self.z as f64)
}
#[inline]
pub fn as_ivec3(&self) -> crate::IVec3 {
crate::IVec3::new(self.x as i32, self.y as i32, self.z as i32)
}
#[inline]
pub fn as_uvec3(&self) -> crate::UVec3 {
crate::UVec3::new(self.x as u32, self.y as u32, self.z as u32)
}
}
impl Default for Vec3A {
#[inline(always)]
fn default() -> Self {
Self::ZERO
}
}
impl Div<Vec3A> for Vec3A {
type Output = Self;
#[inline]
fn div(self, rhs: Self) -> Self {
Self {
x: self.x.div(rhs.x),
y: self.y.div(rhs.y),
z: self.z.div(rhs.z),
}
}
}
impl DivAssign<Vec3A> for Vec3A {
#[inline]
fn div_assign(&mut self, rhs: Self) {
self.x.div_assign(rhs.x);
self.y.div_assign(rhs.y);
self.z.div_assign(rhs.z);
}
}
impl Div<f32> for Vec3A {
type Output = Self;
#[inline]
fn div(self, rhs: f32) -> Self {
Self {
x: self.x.div(rhs),
y: self.y.div(rhs),
z: self.z.div(rhs),
}
}
}
impl DivAssign<f32> for Vec3A {
#[inline]
fn div_assign(&mut self, rhs: f32) {
self.x.div_assign(rhs);
self.y.div_assign(rhs);
self.z.div_assign(rhs);
}
}
impl Div<Vec3A> for f32 {
type Output = Vec3A;
#[inline]
fn div(self, rhs: Vec3A) -> Vec3A {
Vec3A {
x: self.div(rhs.x),
y: self.div(rhs.y),
z: self.div(rhs.z),
}
}
}
impl Mul<Vec3A> for Vec3A {
type Output = Self;
#[inline]
fn mul(self, rhs: Self) -> Self {
Self {
x: self.x.mul(rhs.x),
y: self.y.mul(rhs.y),
z: self.z.mul(rhs.z),
}
}
}
impl MulAssign<Vec3A> for Vec3A {
#[inline]
fn mul_assign(&mut self, rhs: Self) {
self.x.mul_assign(rhs.x);
self.y.mul_assign(rhs.y);
self.z.mul_assign(rhs.z);
}
}
impl Mul<f32> for Vec3A {
type Output = Self;
#[inline]
fn mul(self, rhs: f32) -> Self {
Self {
x: self.x.mul(rhs),
y: self.y.mul(rhs),
z: self.z.mul(rhs),
}
}
}
impl MulAssign<f32> for Vec3A {
#[inline]
fn mul_assign(&mut self, rhs: f32) {
self.x.mul_assign(rhs);
self.y.mul_assign(rhs);
self.z.mul_assign(rhs);
}
}
impl Mul<Vec3A> for f32 {
type Output = Vec3A;
#[inline]
fn mul(self, rhs: Vec3A) -> Vec3A {
Vec3A {
x: self.mul(rhs.x),
y: self.mul(rhs.y),
z: self.mul(rhs.z),
}
}
}
impl Add<Vec3A> for Vec3A {
type Output = Self;
#[inline]
fn add(self, rhs: Self) -> Self {
Self {
x: self.x.add(rhs.x),
y: self.y.add(rhs.y),
z: self.z.add(rhs.z),
}
}
}
impl AddAssign<Vec3A> for Vec3A {
#[inline]
fn add_assign(&mut self, rhs: Self) {
self.x.add_assign(rhs.x);
self.y.add_assign(rhs.y);
self.z.add_assign(rhs.z);
}
}
impl Add<f32> for Vec3A {
type Output = Self;
#[inline]
fn add(self, rhs: f32) -> Self {
Self {
x: self.x.add(rhs),
y: self.y.add(rhs),
z: self.z.add(rhs),
}
}
}
impl AddAssign<f32> for Vec3A {
#[inline]
fn add_assign(&mut self, rhs: f32) {
self.x.add_assign(rhs);
self.y.add_assign(rhs);
self.z.add_assign(rhs);
}
}
impl Add<Vec3A> for f32 {
type Output = Vec3A;
#[inline]
fn add(self, rhs: Vec3A) -> Vec3A {
Vec3A {
x: self.add(rhs.x),
y: self.add(rhs.y),
z: self.add(rhs.z),
}
}
}
impl Sub<Vec3A> for Vec3A {
type Output = Self;
#[inline]
fn sub(self, rhs: Self) -> Self {
Self {
x: self.x.sub(rhs.x),
y: self.y.sub(rhs.y),
z: self.z.sub(rhs.z),
}
}
}
impl SubAssign<Vec3A> for Vec3A {
#[inline]
fn sub_assign(&mut self, rhs: Vec3A) {
self.x.sub_assign(rhs.x);
self.y.sub_assign(rhs.y);
self.z.sub_assign(rhs.z);
}
}
impl Sub<f32> for Vec3A {
type Output = Self;
#[inline]
fn sub(self, rhs: f32) -> Self {
Self {
x: self.x.sub(rhs),
y: self.y.sub(rhs),
z: self.z.sub(rhs),
}
}
}
impl SubAssign<f32> for Vec3A {
#[inline]
fn sub_assign(&mut self, rhs: f32) {
self.x.sub_assign(rhs);
self.y.sub_assign(rhs);
self.z.sub_assign(rhs);
}
}
impl Sub<Vec3A> for f32 {
type Output = Vec3A;
#[inline]
fn sub(self, rhs: Vec3A) -> Vec3A {
Vec3A {
x: self.sub(rhs.x),
y: self.sub(rhs.y),
z: self.sub(rhs.z),
}
}
}
impl Rem<Vec3A> for Vec3A {
type Output = Self;
#[inline]
fn rem(self, rhs: Self) -> Self {
Self {
x: self.x.rem(rhs.x),
y: self.y.rem(rhs.y),
z: self.z.rem(rhs.z),
}
}
}
impl RemAssign<Vec3A> for Vec3A {
#[inline]
fn rem_assign(&mut self, rhs: Self) {
self.x.rem_assign(rhs.x);
self.y.rem_assign(rhs.y);
self.z.rem_assign(rhs.z);
}
}
impl Rem<f32> for Vec3A {
type Output = Self;
#[inline]
fn rem(self, rhs: f32) -> Self {
Self {
x: self.x.rem(rhs),
y: self.y.rem(rhs),
z: self.z.rem(rhs),
}
}
}
impl RemAssign<f32> for Vec3A {
#[inline]
fn rem_assign(&mut self, rhs: f32) {
self.x.rem_assign(rhs);
self.y.rem_assign(rhs);
self.z.rem_assign(rhs);
}
}
impl Rem<Vec3A> for f32 {
type Output = Vec3A;
#[inline]
fn rem(self, rhs: Vec3A) -> Vec3A {
Vec3A {
x: self.rem(rhs.x),
y: self.rem(rhs.y),
z: self.rem(rhs.z),
}
}
}
#[cfg(not(target_arch = "spirv"))]
impl AsRef<[f32; 3]> for Vec3A {
#[inline]
fn as_ref(&self) -> &[f32; 3] {
unsafe { &*(self as *const Vec3A as *const [f32; 3]) }
}
}
#[cfg(not(target_arch = "spirv"))]
impl AsMut<[f32; 3]> for Vec3A {
#[inline]
fn as_mut(&mut self) -> &mut [f32; 3] {
unsafe { &mut *(self as *mut Vec3A as *mut [f32; 3]) }
}
}
impl<'a> Sum<&'a Self> for Vec3A {
#[inline]
fn sum<I>(iter: I) -> Self
where
I: Iterator<Item = &'a Self>,
{
iter.fold(Self::ZERO, |a, &b| Self::add(a, b))
}
}
impl<'a> Product<&'a Self> for Vec3A {
#[inline]
fn product<I>(iter: I) -> Self
where
I: Iterator<Item = &'a Self>,
{
iter.fold(Self::ONE, |a, &b| Self::mul(a, b))
}
}
impl Neg for Vec3A {
type Output = Self;
#[inline]
fn neg(self) -> Self {
Self {
x: self.x.neg(),
y: self.y.neg(),
z: self.z.neg(),
}
}
}
impl Index<usize> for Vec3A {
type Output = f32;
#[inline]
fn index(&self, index: usize) -> &Self::Output {
match index {
0 => &self.x,
1 => &self.y,
2 => &self.z,
_ => panic!("index out of bounds"),
}
}
}
impl IndexMut<usize> for Vec3A {
#[inline]
fn index_mut(&mut self, index: usize) -> &mut Self::Output {
match index {
0 => &mut self.x,
1 => &mut self.y,
2 => &mut self.z,
_ => panic!("index out of bounds"),
}
}
}
#[cfg(not(target_arch = "spirv"))]
impl fmt::Display for Vec3A {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "[{}, {}, {}]", self.x, self.y, self.z)
}
}
#[cfg(not(target_arch = "spirv"))]
impl fmt::Debug for Vec3A {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt.debug_tuple(stringify!(Vec3A))
.field(&self.x)
.field(&self.y)
.field(&self.z)
.finish()
}
}
impl From<[f32; 3]> for Vec3A {
#[inline]
fn from(a: [f32; 3]) -> Self {
Self::new(a[0], a[1], a[2])
}
}
impl From<Vec3A> for [f32; 3] {
#[inline]
fn from(v: Vec3A) -> Self {
[v.x, v.y, v.z]
}
}
impl From<(f32, f32, f32)> for Vec3A {
#[inline]
fn from(t: (f32, f32, f32)) -> Self {
Self::new(t.0, t.1, t.2)
}
}
impl From<Vec3A> for (f32, f32, f32) {
#[inline]
fn from(v: Vec3A) -> Self {
(v.x, v.y, v.z)
}
}
impl From<Vec3> for Vec3A {
#[inline]
fn from(v: Vec3) -> Self {
Self::new(v.x, v.y, v.z)
}
}
impl From<Vec4> for Vec3A {
#[inline]
fn from(v: Vec4) -> Self {
Self {
x: v.x,
y: v.y,
z: v.z,
}
}
}
impl From<Vec3A> for Vec3 {
#[inline]
fn from(v: Vec3A) -> Self {
Self {
x: v.x,
y: v.y,
z: v.z,
}
}
}
impl From<(Vec2, f32)> for Vec3A {
#[inline]
fn from((v, z): (Vec2, f32)) -> Self {
Self::new(v.x, v.y, z)
}
}