1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
// Copyright 2023 The rust-ggstd authors. All rights reserved.
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

use super::deflatefast::DeflateFast;
use super::huffman_bit_writer::HuffmanBitWriter;
use super::token::{literal_token, match_token, Token};
use crate::compat;

pub const NO_COMPRESSION: isize = 0;
pub const BEST_SPEED: isize = 1;
pub const BEST_COMPRESSION: isize = 9;
pub const DEFAULT_COMPRESSION: isize = -1;

// HUFFMAN_ONLY disables Lempel-Ziv match searching and only performs Huffman
// entropy encoding. This mode is useful in compressing data that has
// already been compressed with an LZ style algorithm (e.g. Snappy or LZ4)
// that lacks an entropy encoder. Compression gains are achieved when
// certain bytes in the input stream occur more frequently than others.
//
// Note that HUFFMAN_ONLY produces a compressed output that is
// RFC 1951 compliant. That is, any valid DEFLATE decompressor will
// continue to be able to decompress this output.
pub const HUFFMAN_ONLY: isize = -2;

const LOG_WINDOW_SIZE: usize = 15;
pub(super) const WINDOW_SIZE: usize = 1 << LOG_WINDOW_SIZE;
const WINDOW_MASK: usize = WINDOW_SIZE - 1;

// The LZ77 step produces a sequence of literal tokens and <length, offset>
// pair tokens. The offset is also known as distance. The underlying wire
// format limits the range of lengths and offsets. For example, there are
// 256 legitimate lengths: those in the range [3, 258]. This package's
// compressor uses a higher minimum match length, enabling optimizations
// such as finding matches via 32-bit loads and compares.
pub(super) const BASE_MATCH_LENGTH: usize = 3; // The smallest match length per the RFC section 3.2.5
pub(super) const MIN_MATCH_LENGTH: usize = 4; // The smallest match length that the compressor actually emits
pub(super) const MAX_MATCH_LENGTH: usize = 258; // The largest match length
pub(super) const BASE_MATCH_OFFSET: usize = 1; // The smallest match offset
pub(super) const MAX_MATCH_OFFSET: usize = 1 << 15; // The largest match offset

// The maximum number of tokens we put into a single flate block, just to
// stop things from getting too large.
const MAX_FLATE_BLOCK_TOKENS: usize = 1 << 14;
pub(super) const MAX_STORE_BLOCK_SIZE: usize = 65535;
const HASH_BITS: usize = 17; // After 17 performance degrades
const HASH_SIZE: usize = 1 << HASH_BITS;
const HASH_MASK: u32 = (1 << HASH_BITS) - 1;
const MAX_HASH_OFFSET: usize = 1 << 24;

const SKIP_NEVER: usize = i32::MAX as usize;

struct CompressionLevel {
    level: isize,
    good: usize,
    lazy: usize,
    nice: usize,
    chain: usize,
    fast_skip_hashing: usize,
}

impl CompressionLevel {
    const fn new(
        level: isize,
        good: usize,
        lazy: usize,
        nice: usize,
        chain: usize,
        fast_skip_hashing: usize,
    ) -> Self {
        Self {
            level,
            good,
            lazy,
            nice,
            chain,
            fast_skip_hashing,
        }
    }
}

const LEVELS: &[CompressionLevel] = &[
    CompressionLevel::new(0, 0, 0, 0, 0, 0), // NO_COMPRESSION.
    CompressionLevel::new(1, 0, 0, 0, 0, 0), // BEST_SPEED uses a custom algorithm; see deflatefast.go.
    // For levels 2-3 we don't bother trying with lazy matches.
    CompressionLevel::new(2, 4, 0, 16, 8, 5),
    CompressionLevel::new(3, 4, 0, 32, 32, 6),
    // Levels 4-9 use increasingly more lazy matching
    // and increasingly stringent conditions for "good enough".
    CompressionLevel::new(4, 4, 4, 16, 16, SKIP_NEVER),
    CompressionLevel::new(5, 8, 16, 32, 32, SKIP_NEVER),
    CompressionLevel::new(6, 8, 16, 128, 128, SKIP_NEVER),
    CompressionLevel::new(7, 8, 32, 128, 256, SKIP_NEVER),
    CompressionLevel::new(8, 32, 128, 258, 1024, SKIP_NEVER),
    CompressionLevel::new(9, 32, 258, 258, 4096, SKIP_NEVER),
];

const HASHMUL: u32 = 0x1e35a7bd;

/// hash4 returns a hash representation of the first 4 bytes
/// of the supplied slice.
/// The caller must ensure that b.len() >= 4.
pub(super) fn hash4(b: &[u8]) -> u32 {
    ((b[3] as u32) | (b[2] as u32) << 8 | (b[1] as u32) << 16 | (b[0] as u32) << 24)
        .overflowing_mul(HASHMUL)
        .0
        >> (32 - HASH_BITS)
}

/// bulkHash4 will compute hashes using the same
/// algorithm as hash4.
pub(super) fn bulk_hash4(b: &[u8], dst: &mut [u32]) {
    if b.len() < MIN_MATCH_LENGTH {
        return;
    }
    let mut hb = (b[3] as u32) | (b[2] as u32) << 8 | (b[1] as u32) << 16 | (b[0] as u32) << 24;
    dst[0] = hb.overflowing_mul(HASHMUL).0 >> (32 - HASH_BITS);
    let end = b.len() - MIN_MATCH_LENGTH + 1;
    for i in 1..end {
        hb = (hb << 8) | (b[i + 3] as u32);
        dst[i] = hb.overflowing_mul(HASHMUL).0 >> (32 - HASH_BITS);
    }
}

/// match_len returns the number of matching bytes in a and b
/// up to length 'max'. Both slices must be at least 'max'
/// bytes in size.
fn match_len(a: &[u8], b: &[u8], max: usize) -> usize {
    // 	a = a[..max]
    // 	b = b[..len(a)]
    for i in 0..max {
        if b[i] != a[i] {
            return i;
        }
    }
    max
}

pub(super) struct Compressor<'a, Output: std::io::Write> {
    compression_level: &'a CompressionLevel,
    hbw: HuffmanBitWriter<'a, Output>,
    #[allow(clippy::type_complexity)]
    bulk_hasher: Option<fn(&[u8], &mut [u32])>,

    // compression algorithm
    fill: FillFunc, // copy data to window
    step: StepFunc, // process window
    sync: bool,     // requesting flush

    best_speed: Option<DeflateFast>, // Encoder for BestSpeed

    // Input hash chains
    // hashHead[hashValue] contains the largest inputIndex with the specified hash value
    // If hashHead[hashValue] is within the current window, then
    // hashPrev[hashHead[hashValue] & windowMask] contains the previous index
    // with the same hash value.
    chain_head: isize,
    hash_head: Vec<u32>,
    hash_prev: Vec<u32>,
    hash_offset: usize,

    // input window: unprocessed data is window[index:windowEnd]
    index: usize,
    window: Vec<u8>,
    window_end: usize,
    block_start: usize,   // window index where current tokens start
    byte_available: bool, // if true, still need to process window[index-1].

    // queued output tokens
    tokens: Vec<Token>,

    // deflate state
    length: usize,
    offset: usize,
    max_insert_index: isize,
    err: std::io::Result<usize>,
    // hash_match must be able to contain hashes for the maximum match length.
    hash_match: Vec<u32>,

    writer_closed: bool,
}

enum FillFunc {
    Store,
    Deflate,
}

enum StepFunc {
    Deflate,
    Store,
    StoreHuff,
    EncSpeed,
}

#[allow(dead_code)]
impl<'a, Output: std::io::Write> Compressor<'a, Output> {
    fn fill_deflate(&mut self, b: &[u8]) -> usize {
        if self.index >= 2 * WINDOW_SIZE - (MIN_MATCH_LENGTH + MAX_MATCH_LENGTH) {
            // shift the window by WINDOW_SIZE
            compat::copy_within(&mut self.window, WINDOW_SIZE..2 * WINDOW_SIZE, 0);
            self.index -= WINDOW_SIZE;
            self.window_end -= WINDOW_SIZE;
            if self.block_start >= WINDOW_SIZE {
                self.block_start -= WINDOW_SIZE;
            } else {
                self.block_start = usize::MAX;
            }
            self.hash_offset += WINDOW_SIZE;
            if self.hash_offset > MAX_HASH_OFFSET {
                let delta = self.hash_offset - 1;
                self.hash_offset -= delta;
                self.chain_head -= delta as isize;

                let delta = delta as u32;

                for i in 0..self.hash_prev.len() {
                    if self.hash_prev[i] > delta {
                        self.hash_prev[i] -= delta;
                    } else {
                        self.hash_prev[i] = 0;
                    }
                }
                for i in 0..self.hash_head.len() {
                    if self.hash_head[i] > delta {
                        self.hash_head[i] -= delta;
                    } else {
                        self.hash_head[i] = 0;
                    }
                }
            }
        }
        let n = compat::copy(&mut self.window[self.window_end..], b);
        self.window_end += n;
        n
    }

    fn write_block(&mut self, index: usize) {
        if index > 0 {
            let mut window = None;
            if self.block_start <= index {
                window = Some(&self.window[self.block_start..index]);
            }
            self.block_start = index;
            self.hbw.write_block(&self.tokens, false, window);
        }
    }

    // fillWindow will fill the current window with the supplied
    // dictionary and calculate all hashes.
    // This is much faster than doing a full encode.
    // Should only be used after a reset.
    fn fill_window(&mut self, b: &[u8]) {
        // Do not fill window if we are in store-only mode.
        let cl = self.compression_level;
        if cl.level < 2 {
            return;
        }
        if self.index != 0 || self.window_end != 0 {
            panic!("internal error: fillWindow called with stale data");
        }

        let mut b = b;
        // If we are given too much, cut it.
        if b.len() > WINDOW_SIZE {
            b = &b[b.len() - WINDOW_SIZE..];
        }
        // Add all to window.
        let n = compat::copy(&mut self.window, b);

        // Calculate 256 hashes at the time (more L1 cache hits)
        let loops = (n + 256 - MIN_MATCH_LENGTH) / 256;
        for j in 0..loops {
            let index = j * 256;
            let mut end = index + 256 + MIN_MATCH_LENGTH - 1;
            if end > n {
                end = n;
            }
            let to_check = &self.window[index..end];
            let dst_size = to_check.len() - MIN_MATCH_LENGTH + 1;

            if dst_size == 0 {
                continue;
            }

            // let dst = &self.hash_match[..dstSize];
            (self.bulk_hasher.unwrap())(to_check, &mut self.hash_match[..dst_size]);
            for i in 0..dst_size {
                let di = i + index;
                let hh = &mut self.hash_head[(self.hash_match[i] & HASH_MASK) as usize];
                // Get previous value with the same hash.
                // Our chain should point to the previous value.
                self.hash_prev[di & WINDOW_MASK] = *hh;
                // Set the head of the hash chain to us.
                *hh = (di + self.hash_offset) as u32;
            }
        }
        // Update window information.
        self.window_end = n;
        self.index = n;
    }

    //// Try to find a match starting at index whose length is greater than prevSize.
    //// We only look at chainCount possibilities before giving up.
    fn find_match(
        &mut self,
        pos: usize,
        prev_head: usize,
        prev_length: usize,
        lookahead: usize,
    ) -> (usize, usize, bool) {
        // length, offset isize, ok bool
        let mut length: usize;
        let mut offset: usize = 0;
        let mut ok: bool = false;
        let mut min_match_look = MAX_MATCH_LENGTH;
        if lookahead < min_match_look {
            min_match_look = lookahead;
        }

        let win = &self.window[0..(pos + min_match_look)];

        let cl = self.compression_level;

        // We quit when we get a match that's at least nice long
        let mut nice = win.len() - pos;
        if cl.nice < nice {
            nice = cl.nice;
        }

        // If we've got a match that's good enough, only look in 1/4 the chain.
        let mut tries = cl.chain;
        length = prev_length;
        if length >= cl.good {
            tries >>= 2;
        }

        let mut w_end = win[pos + length];
        let w_pos = &win[pos..];
        let min_index = pos as isize - WINDOW_SIZE as isize;

        // 	for i := prevHead; tries > 0; tries-- {
        let mut i: usize = prev_head;
        while tries > 0 {
            if w_end == win[i + length] {
                let n = match_len(&win[i..], w_pos, min_match_look);

                if n > length && (n > MIN_MATCH_LENGTH || pos - i <= 4096) {
                    length = n;
                    offset = pos - i;
                    ok = true;
                    if n >= nice {
                        // The match is good enough that we don't try to find a better one.
                        break;
                    }
                    w_end = win[pos + n];
                }
            }
            if i as isize == min_index {
                // hashPrev[i & windowMask] has already been overwritten, so stop now.
                break;
            }
            let new_i = self.hash_prev[i & WINDOW_MASK] as isize - self.hash_offset as isize;
            if new_i < min_index || new_i < 0 {
                break;
            }
            i = new_i as usize;
            tries -= 1;
        }
        (length, offset, ok)
    }

    fn write_stored_block(&mut self) {
        self.hbw
            .write_stored_header(self.window[..self.window_end].len(), false);
        if self.hbw.error().is_err() {
            return;
        }
        self.hbw.write_bytes(&self.window[..self.window_end]);
    }

    /// enc_speed will compress and store the currently added data,
    /// if enough has been accumulated or we at the end of the stream.
    fn enc_speed(&mut self) {
        // We only compress if we have MAX_STORE_BLOCK_SIZE.
        if self.window_end < MAX_STORE_BLOCK_SIZE {
            if !self.sync {
                return;
            }

            // Handle small sizes.
            if self.window_end < 128 {
                if self.window_end == 0 {
                    return;
                } else if self.window_end <= 16 {
                    self.write_stored_block();
                } else {
                    self.hbw
                        .write_block_huff(false, &self.window[..self.window_end]);
                }
                self.window_end = 0;
                self.best_speed.as_mut().unwrap().reset();
                return;
            }
        }
        // Encode the block.
        self.tokens.truncate(0);
        self.best_speed
            .as_mut()
            .unwrap()
            .encode(&mut self.tokens, &self.window[..self.window_end]);

        // If we removed less than 1/16th, Huffman compress the block.
        if self.tokens.len() > self.window_end - (self.window_end >> 4) {
            self.hbw
                .write_block_huff(false, &self.window[..self.window_end]);
        } else {
            self.hbw.write_block_dynamic(
                &self.tokens,
                false,
                Some(&self.window[..self.window_end]),
            );
        }
        self.window_end = 0;
    }

    fn deflate(&mut self) {
        if self.window_end - self.index < MIN_MATCH_LENGTH + MAX_MATCH_LENGTH && !self.sync {
            return;
        }

        self.max_insert_index = self.window_end as isize - (MIN_MATCH_LENGTH as isize - 1);

        'Loop: loop {
            if self.index > self.window_end {
                panic!("index > windowEnd");
            }
            let lookahead = self.window_end - self.index;
            if lookahead < MIN_MATCH_LENGTH + MAX_MATCH_LENGTH {
                if !self.sync {
                    break 'Loop;
                }
                if self.index > self.window_end {
                    panic!("index > windowEnd");
                }
                if lookahead == 0 {
                    // Flush current output block if any.
                    if self.byte_available {
                        // There is still one pending token that needs to be flushed
                        self.tokens
                            .push(literal_token(self.window[self.index - 1] as u32));
                        self.byte_available = false;
                    }
                    if !self.tokens.is_empty() {
                        self.write_block(self.index);
                        if self.error().is_err() {
                            return;
                        }
                        self.tokens.truncate(0);
                    }
                    break 'Loop;
                }
            }
            if (self.index as isize) < self.max_insert_index {
                // Update the hash
                let hash = hash4(&self.window[self.index..self.index + MIN_MATCH_LENGTH]);
                let hh = &mut self.hash_head[(hash & HASH_MASK) as usize];
                self.chain_head = *hh as isize;
                self.hash_prev[self.index & WINDOW_MASK] = self.chain_head as u32;
                *hh = (self.index + self.hash_offset) as u32;
            }
            let prev_length = self.length;
            let prev_offset = self.offset;
            self.length = MIN_MATCH_LENGTH - 1;
            self.offset = 0;
            let mut min_index = self.index as isize - WINDOW_SIZE as isize;
            if min_index < 0 {
                min_index = 0;
            }

            let cl = self.compression_level;

            if self.chain_head - self.hash_offset as isize >= min_index
                && (cl.fast_skip_hashing != SKIP_NEVER && lookahead > MIN_MATCH_LENGTH - 1
                    || cl.fast_skip_hashing == SKIP_NEVER
                        && lookahead > prev_length
                        && prev_length < cl.lazy)
            {
                let (new_length, new_offset, ok) = self.find_match(
                    self.index,
                    self.chain_head as usize - self.hash_offset,
                    MIN_MATCH_LENGTH - 1,
                    lookahead,
                );
                if ok {
                    self.length = new_length;
                    self.offset = new_offset;
                }
            }
            if cl.fast_skip_hashing != SKIP_NEVER && self.length >= MIN_MATCH_LENGTH
                || cl.fast_skip_hashing == SKIP_NEVER
                    && prev_length >= MIN_MATCH_LENGTH
                    && self.length <= prev_length
            {
                // There was a match at the previous step, and the current match is
                // not better. Output the previous match.
                if cl.fast_skip_hashing != SKIP_NEVER {
                    self.tokens.push(match_token(
                        (self.length - BASE_MATCH_LENGTH) as u32,
                        (self.offset - BASE_MATCH_OFFSET) as u32,
                    ));
                } else {
                    self.tokens.push(match_token(
                        (prev_length - BASE_MATCH_LENGTH) as u32,
                        (prev_offset - BASE_MATCH_OFFSET) as u32,
                    ));
                }
                // Insert in the hash table all strings up to the end of the match.
                // index and index-1 are already inserted. If there is not enough
                // lookahead, the last two strings are not inserted into the hash
                // table.
                if self.length <= cl.fast_skip_hashing {
                    let new_index = if cl.fast_skip_hashing != SKIP_NEVER {
                        self.index + self.length
                    } else {
                        self.index + prev_length - 1
                    };
                    let mut index = self.index;
                    index += 1;
                    while index < new_index {
                        if (index as isize) < self.max_insert_index {
                            let hash = hash4(&self.window[index..index + MIN_MATCH_LENGTH]);
                            // Get previous value with the same hash.
                            // Our chain should point to the previous value.
                            let hh = &mut self.hash_head[(hash & HASH_MASK) as usize];
                            self.hash_prev[index & WINDOW_MASK] = *hh;
                            // Set the head of the hash chain to us.
                            *hh = (index + self.hash_offset) as u32;
                        }
                        index += 1;
                    }
                    self.index = index;

                    if cl.fast_skip_hashing == SKIP_NEVER {
                        self.byte_available = false;
                        self.length = MIN_MATCH_LENGTH - 1;
                    }
                } else {
                    // For matches this long, we don't bother inserting each individual
                    // item into the table.
                    self.index += self.length;
                }
                if self.tokens.len() == MAX_FLATE_BLOCK_TOKENS {
                    // The block includes the current character
                    self.write_block(self.index);
                    if self.error().is_err() {
                        return;
                    }
                    self.tokens.truncate(0);
                }
            } else {
                if cl.fast_skip_hashing != SKIP_NEVER || self.byte_available {
                    let i = if cl.fast_skip_hashing != SKIP_NEVER {
                        self.index
                    } else {
                        self.index - 1
                    };
                    self.tokens.push(literal_token(self.window[i] as u32));
                    if self.tokens.len() == MAX_FLATE_BLOCK_TOKENS {
                        self.write_block(i + 1);
                        if self.error().is_err() {
                            return;
                        }
                        self.tokens.truncate(0);
                    }
                }
                self.index += 1;
                if cl.fast_skip_hashing == SKIP_NEVER {
                    self.byte_available = true;
                }
            }
        }
    }

    fn fill_store(&mut self, b: &[u8]) -> usize {
        let n = compat::copy(&mut self.window[self.window_end..], b);
        self.window_end += n;
        n
    }

    fn store(&mut self) {
        if self.window_end > 0 && (self.window_end == MAX_STORE_BLOCK_SIZE || self.sync) {
            self.write_stored_block();
            self.window_end = 0;
        }
    }

    /// storeHuff compresses and stores the currently added data
    /// when the self.window is full or we are at the end of the stream.
    /// Any error that occurred will be in self.err
    fn store_huff(&mut self) {
        if self.window_end < self.window.len() && !self.sync || self.window_end == 0 {
            return;
        }
        self.hbw
            .write_block_huff(false, &self.window[..self.window_end]);
        self.window_end = 0;
    }

    fn error(&self) -> &std::io::Result<usize> {
        let writer_error = self.hbw.error();
        if writer_error.is_err() {
            return writer_error;
        }
        &self.err
    }

    // result of the operation will be stored in self.err, use self.error() to get it
    fn write(&mut self, b: &[u8]) -> std::io::Result<usize> {
        if let Err(e) = self.error() {
            return Err(compat::copy_stdio_error(e));
        }
        let mut b = b;
        let n = b.len();
        while !b.is_empty() {
            self.do_step();
            let x = match self.fill {
                FillFunc::Store => self.fill_store(b),
                FillFunc::Deflate => self.fill_deflate(b),
            };
            b = &b[x..];
            if let Err(e) = self.error() {
                return Err(compat::copy_stdio_error(e));
            }
        }
        Ok(n)
    }

    fn do_step(&mut self) {
        match self.step {
            StepFunc::Deflate => self.deflate(),
            StepFunc::Store => self.store(),
            StepFunc::StoreHuff => self.store_huff(),
            StepFunc::EncSpeed => self.enc_speed(),
        }
    }

    fn sync_flush(&mut self) -> std::io::Result<()> {
        if let Err(e) = self.error() {
            return Err(compat::copy_stdio_error(e));
        }
        self.sync = true;
        self.do_step();
        if let Err(e) = self.error() {
            return Err(compat::copy_stdio_error(e));
        }
        self.hbw.write_stored_header(0, false);
        if let Err(e) = self.error() {
            return Err(compat::copy_stdio_error(e));
        }
        self.hbw.flush();
        if let Err(e) = self.error() {
            return Err(compat::copy_stdio_error(e));
        }
        self.sync = false;
        Ok(())
    }

    fn new(w: &'a mut Output, level: isize) -> Self {
        let compression_level: &'a CompressionLevel;
        #[allow(clippy::type_complexity)]
        let mut bulk_hasher: Option<fn(&[u8], &mut [u32])> = None;
        let fill: FillFunc;
        let step: StepFunc;
        let mut best_speed: Option<DeflateFast> = None;
        let mut chain_head: isize = 0;
        let mut hash_offset: usize = 0;
        let window;
        let mut tokens: Vec<Token> = Vec::new();
        let mut length: usize = 0;

        if level == NO_COMPRESSION {
            compression_level = &LEVELS[NO_COMPRESSION as usize];
            window = vec![0; MAX_STORE_BLOCK_SIZE];
            fill = FillFunc::Store;
            step = StepFunc::Store;
        } else if level == HUFFMAN_ONLY {
            compression_level = &LEVELS[NO_COMPRESSION as usize];
            window = vec![0; MAX_STORE_BLOCK_SIZE];
            fill = FillFunc::Store;
            step = StepFunc::StoreHuff;
        } else if level == BEST_SPEED {
            compression_level = &LEVELS[level as usize];
            window = vec![0; MAX_STORE_BLOCK_SIZE];
            fill = FillFunc::Store;
            step = StepFunc::EncSpeed;
            best_speed = Some(DeflateFast::new());
            tokens = vec![Token::default(); MAX_STORE_BLOCK_SIZE];
        } else if level == DEFAULT_COMPRESSION || (2..=9).contains(&level) {
            let level = if level == DEFAULT_COMPRESSION {
                6
            } else {
                level
            };
            compression_level = &LEVELS[level as usize];

            // initDeflate();
            window = vec![0; 2 * WINDOW_SIZE];
            hash_offset = 1;
            tokens = Vec::with_capacity(MAX_FLATE_BLOCK_TOKENS + 1);
            length = MIN_MATCH_LENGTH - 1;
            chain_head = -1;
            bulk_hasher = Some(bulk_hash4);

            fill = FillFunc::Deflate;
            step = StepFunc::Deflate;
        } else {
            panic!(
                "flate: invalid compression level {}: want value in range [-2, 9]",
                level
            );
        }
        Self {
            compression_level,
            hbw: HuffmanBitWriter::new(w),
            bulk_hasher,
            fill,
            step,
            sync: false,
            best_speed,
            chain_head,
            hash_head: vec![0; HASH_SIZE],
            hash_prev: vec![0; WINDOW_SIZE],
            hash_offset,
            index: 0,
            window,
            window_end: 0,
            block_start: 0,
            byte_available: false,
            tokens,
            length,
            offset: 0,
            max_insert_index: 0,
            err: Ok(0),
            hash_match: vec![0; MAX_MATCH_LENGTH - 1],
            writer_closed: false,
        }
    }

    fn reset(&mut self, w: &'a mut Output) {
        self.hbw.reset(w);
        self.sync = false;
        self.err = Ok(0);
        if self.best_speed.is_some() {
            self.best_speed.as_mut().unwrap().reset();
        }
        self.chain_head = -1;
        self.hash_head.fill(0);
        self.hash_prev.fill(0);
        self.hash_offset = 1;
        self.index = 0;
        self.window_end = 0;
        self.block_start = 0;
        self.byte_available = false;
        self.tokens.truncate(0);
        self.length = MIN_MATCH_LENGTH - 1;
        self.offset = 0;
        self.max_insert_index = 0;
        self.err = Ok(0);
        self.hash_match = vec![0; MAX_MATCH_LENGTH - 1];
        self.writer_closed = false;
    }

    fn close(&mut self) -> std::io::Result<()> {
        if self.writer_closed {
            return Ok(());
        }
        if let Err(e) = self.error() {
            return Err(compat::copy_stdio_error(e));
        }
        self.sync = true;
        self.do_step();
        if let Err(e) = self.error() {
            return Err(compat::copy_stdio_error(e));
        }
        self.hbw.write_stored_header(0, true);
        if let Err(e) = self.error() {
            return Err(compat::copy_stdio_error(e));
        }
        self.hbw.flush();
        if let Err(e) = self.error() {
            return Err(compat::copy_stdio_error(e));
        }
        self.writer_closed = true;
        // set error so that the next write operation will fail
        self.err = Err(std::io::Error::new(
            std::io::ErrorKind::BrokenPipe,
            "flate: closed writer",
        ));
        Ok(())
    }

    /// Returns a mutable reference to the output writer.
    pub fn output(&mut self) -> &mut Output {
        self.hbw.output()
    }
}

// var errWriterClosed = errors.New("flate: closed writer")

// A Writer takes data written to it and writes the compressed
// form of that data to the output writer.
pub struct Writer<'a, Output: std::io::Write> {
    d: Compressor<'a, Output>,
    dict: Option<Vec<u8>>,
}

impl<'a, Output: std::io::Write> Writer<'a, Output> {
    /// new returns a new Writer compressing data at the given level.
    /// Following zlib, levels range from 1 (BEST_SPEED) to 9 (BEST_COMPRESSION);
    /// higher levels typically run slower but compress more. Level 0
    /// (NO_COMPRESSION) does not attempt any compression; it only adds the
    /// necessary DEFLATE framing.
    /// Level -1 (DEFAULT_COMPRESSION) uses the default compression level.
    /// Level -2 (HUFFMAN_ONLY) will use Huffman compression only, giving
    /// a very fast compression for all types of input, but sacrificing considerable
    /// compression efficiency.
    ///
    /// If level is in the range [-2, 9] then the error returned will be nil.
    /// Otherwise the error returned will be non-nil.
    pub fn new(w: &'a mut Output, level: isize) -> std::io::Result<Self> {
        if level == NO_COMPRESSION
            || level == HUFFMAN_ONLY
            || level == BEST_SPEED
            || level == DEFAULT_COMPRESSION
            || (2..=9).contains(&level)
        {
            // correct level
        } else {
            let msg = format!(
                "flate: invalid compression level {}: want value in range [-2, 9]",
                level
            );
            return Err(std::io::Error::new(std::io::ErrorKind::InvalidInput, msg));
        }

        return Ok(Self {
            d: Compressor::new(w, level),
            dict: None,
        });
    }

    /// new_dict is like new but initializes the new
    /// Writer with a preset dictionary. The returned Writer behaves
    /// as if the dictionary had been written to it without producing
    /// any compressed output. The compressed data written to w
    /// can only be decompressed by a Reader initialized with the
    /// same dictionary.
    pub fn new_dict(w: &'a mut Output, level: isize, dict: &[u8]) -> std::io::Result<Self> {
        let mut zw = Self::new(w, level)?;
        zw.d.fill_window(dict);
        zw.dict = Some(dict.to_vec()); // duplicate dictionary for Reset method.
        Ok(zw)
    }

    /// close flushes and closes the writer.
    pub fn close(&mut self) -> std::io::Result<()> {
        self.d.close()
    }

    /// reset discards the writer's state and makes it equivalent to
    /// the result of Writer::new_dict called with dst
    /// and w's level and dictionary.
    pub fn reset(&mut self, dst: &'a mut Output) {
        if self.dict.is_some() {
            // w was created with Writer::new_dict
            self.d.reset(dst);
            self.d.fill_window(self.dict.as_ref().unwrap());
        } else {
            // w was created with new
            self.d.reset(dst)
        }
    }

    /// Returns a mutable reference to the output writer.
    pub fn output(&mut self) -> &mut Output {
        self.d.output()
    }
}

impl<Output: std::io::Write> std::io::Write for Writer<'_, Output> {
    /// write writes data to w, which will eventually write the
    /// compressed form of data to its underlying writer.
    fn write(&mut self, data: &[u8]) -> std::io::Result<usize> {
        self.d.write(data)
    }

    /// flush flushes any pending data to the underlying writer.
    /// It is useful mainly in compressed network protocols, to ensure that
    /// a remote reader has enough data to reconstruct a packet.
    /// Flush does not return until the data has been written.
    /// Calling Flush when there is no pending data still causes the Writer
    /// to emit a sync marker of at least 4 bytes.
    /// If the underlying writer returns an error, Flush returns that error.
    ///
    /// In the terminology of the zlib library, Flush is equivalent to Z_SYNC_FLUSH.
    fn flush(&mut self) -> std::io::Result<()> {
        self.d.sync_flush()
    }
}