1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
//! An abstract input state object that gets fed user
//! events and updates itself based on a set of key
//! bindings.
//!
//! The goals are:
//!
//! * Have a layer of abstract key bindings rather than
//! looking at concrete event types
//! * Use this to be able to abstract away differences
//! between keyboards, joysticks and game controllers
//! (rather based on Unity3D),
//! * Do some tweening of input axes and stuff just for
//! fun.
//! * Take ggez's event-based input API, and present event- or
//! state-based API so you can do whichever you want.

// TODO: Handle mice, game pads/joysticks

use ggez::event::KeyCode;
use std::collections::HashMap;
use std::hash::Hash;

// Okay, but how does it actually work?
// Basically we have to bind input events to buttons and axes.
// Input events can be keys, mouse buttons/motion, or eventually
// joystick/controller inputs.  Mouse delta can be mapped to axes too.
//
// https://docs.unity3d.com/Manual/ConventionalGameInput.html has useful
// descriptions of the exact behavior of axes.
//
// So to think about this more clearly, here are the default bindings:
//
// W, ↑: +Y axis
// A, ←: -X axis
// S, ↓: -Y axis
// D, →: +X axis
// Enter, z, LMB: Button 1
// Shift, x, MMB: Button 2
// Ctrl,  c, RMB: Button 3
//
// Easy way?  Hash map of event -> axis/button bindings.

/// The raw ggez input types; the "from" part of an input mapping.
///
/// TODO: Desperately needs better name.
#[derive(Debug, Hash, Eq, PartialEq, Copy, Clone)]
enum InputType {
    KeyEvent(KeyCode), // MouseButtonEvent,
}

/// Abstract input values; the "to" part of an input mapping.
///
/// This is generic over `Axes` and `Buttons` types; these are
/// types that YOU define.  For instance, for your particular
/// game you may have a "camera" axis, a "movement" axis, and
/// "select", "menu" and "exit" buttons.  You would do something
/// like this:
///
/// ```rust
/// use ggez_goodies::input::InputEffect;
/// #[derive(PartialEq, Eq, Hash, Clone)]
/// enum MyAxes {
///     Camera,
///     Movement
/// }
/// #[derive(PartialEq, Eq, Hash, Clone)]
/// enum MyButtons {
///     Select,
///     Menu,
///     Exit
/// }
///
/// type MyInputEffect = InputEffect<MyAxes, MyButtons>;
/// ```
///
/// TODO: Desperately needs better name.
#[derive(Debug, Copy, Clone, PartialEq, Hash)]
pub enum InputEffect<Axes, Buttons>
where
    Axes: Eq + Hash + Clone,
    Buttons: Eq + Hash + Clone,
{
    Axis(Axes, bool),
    Button(Buttons),
}

/// The stored state of an `Axis`.
///
/// An axis is not JUST an exact position, this does
/// some simple linear smoothing of the axis value that
/// is usually quite nice.  This also contains the state
/// and constants necessary for that.
#[derive(Debug, Copy, Clone)]
struct AxisState {
    /// Where the axis currently is, in [-1, 1]
    position: f32,
    /// Where the axis is moving towards.  Possible
    /// values are -1, 0, +1
    /// (or a continuous range for analog devices I guess)
    direction: f32,
    /// Speed in units per second that the axis
    /// moves towards the target value.
    acceleration: f32,
    /// Speed in units per second that the axis will
    /// fall back toward 0 if the input stops.
    gravity: f32,
}

impl Default for AxisState {
    fn default() -> Self {
        AxisState {
            position: 0.0,
            direction: 0.0,
            acceleration: 4.0,
            gravity: 3.0,
        }
    }
}

/// All the state necessary for a button press.
#[derive(Debug, Copy, Clone, Default)]
struct ButtonState {
    pressed: bool,
    pressed_last_frame: bool,
}

/// A struct that contains a mapping from physical input events
/// (currently just `KeyCode`s) to whatever your logical Axis/Button
/// types are.
#[derive(Clone, PartialEq)]
pub struct InputBinding<Axes, Buttons>
where
    Axes: Hash + Eq + Clone,
    Buttons: Hash + Eq + Clone,
{
    // Once EnumSet is stable it should be used for these
    // instead of BTreeMap. ♥?
    // Binding of keys to input values.
    bindings: HashMap<InputType, InputEffect<Axes, Buttons>>,
}

impl<Axes, Buttons> InputBinding<Axes, Buttons>
where
    Axes: Hash + Eq + Clone,
    Buttons: Hash + Eq + Clone,
{
    pub fn new() -> Self {
        InputBinding {
            bindings: HashMap::new(),
        }
    }

    /// Adds a key binding connecting the given keycode to the given
    /// logical axis.
    pub fn bind_key_to_axis(mut self, keycode: KeyCode, axis: Axes, positive: bool) -> Self {
        self.bindings.insert(
            InputType::KeyEvent(keycode),
            InputEffect::Axis(axis.clone(), positive),
        );
        self
    }

    /// Adds a key binding connecting the given keycode to the given
    /// logical button.
    pub fn bind_key_to_button(mut self, keycode: KeyCode, button: Buttons) -> Self {
        self.bindings.insert(
            InputType::KeyEvent(keycode),
            InputEffect::Button(button.clone()),
        );
        self
    }

    /// Takes an physical input type and turns it into a logical input type (keycode -> axis/button).
    pub fn resolve(&self, keycode: KeyCode) -> Option<InputEffect<Axes, Buttons>> {
        self.bindings.get(&InputType::KeyEvent(keycode)).cloned()
    }
}

/// The object that tracks the current state of the input controls,
/// such as axes, bindings, etc.
#[derive(Debug, Clone)]
pub struct InputState<Axes, Buttons>
where
    Axes: Hash + Eq + Clone,
    Buttons: Hash + Eq + Clone,
{
    // Input state for axes
    axes: HashMap<Axes, AxisState>,
    // Input states for buttons
    buttons: HashMap<Buttons, ButtonState>,
}

impl<Axes, Buttons> InputState<Axes, Buttons>
where
    Axes: Eq + Hash + Clone,
    Buttons: Eq + Hash + Clone,
{
    pub fn new() -> Self {
        Self {
            axes: HashMap::default(),
            buttons: HashMap::default(),
        }
    }

    /// Updates the logical input state based on the actual
    /// physical input state.  Should be called in your update()
    /// handler.  It will do things like move the axes and so on.
    pub fn update(&mut self, dt: f32) {
        for (_axis, axis_status) in self.axes.iter_mut() {
            if axis_status.direction != 0.0 {
                // Accelerate the axis towards the
                // input'ed direction.
                let vel = axis_status.acceleration * dt;
                let pending_position = axis_status.position
                    + if axis_status.direction > 0.0 {
                        vel
                    } else {
                        -vel
                    };
                axis_status.position = if pending_position > 1.0 {
                    1.0
                } else if pending_position < -1.0 {
                    -1.0
                } else {
                    pending_position
                }
            } else {
                // Gravitate back towards 0.
                let abs_dx = f32::min(axis_status.gravity * dt, f32::abs(axis_status.position));
                let dx = if axis_status.position > 0.0 {
                    -abs_dx
                } else {
                    abs_dx
                };
                axis_status.position += dx;
            }
        }
        for (_button, button_status) in self.buttons.iter_mut() {
            button_status.pressed_last_frame = button_status.pressed;
        }
    }

    /// This method should get called by your `key_down_event` handler.
    pub fn update_button_down(&mut self, button: Buttons) {
        self.update_effect(InputEffect::Button(button), true);
    }

    /// This method should get called by your `key_up_event` handler.
    pub fn update_button_up(&mut self, button: Buttons) {
        self.update_effect(InputEffect::Button(button), false);
    }

    /// This method should get called by your `key_down_event` handler.
    pub fn update_axis_start(&mut self, axis: Axes, positive: bool) {
        self.update_effect(InputEffect::Axis(axis, positive), true);
    }

    /// This method should get called by your `key_up_event` handler.
    pub fn update_axis_stop(&mut self, axis: Axes, positive: bool) {
        self.update_effect(InputEffect::Axis(axis, positive), false);
    }

    /// Takes an InputEffect and actually applies it.
    pub fn update_effect(&mut self, effect: InputEffect<Axes, Buttons>, started: bool) {
        match effect {
            InputEffect::Axis(axis, positive) => {
                let f = || AxisState::default();
                let axis_status = self.axes.entry(axis).or_insert_with(f);
                if started {
                    let direction_float = if positive { 1.0 } else { -1.0 };
                    axis_status.direction = direction_float;
                } else if (positive && axis_status.direction > 0.0)
                    || (!positive && axis_status.direction < 0.0)
                {
                    axis_status.direction = 0.0;
                }
            }
            InputEffect::Button(button) => {
                let f = || ButtonState::default();
                let button_status = self.buttons.entry(button).or_insert_with(f);
                button_status.pressed = started;
            }
        }
    }

    pub fn get_axis(&self, axis: Axes) -> f32 {
        let d = AxisState::default();
        let axis_status = self.axes.get(&axis).unwrap_or(&d);
        axis_status.position
    }

    pub fn get_axis_raw(&self, axis: Axes) -> f32 {
        let d = AxisState::default();
        let axis_status = self.axes.get(&axis).unwrap_or(&d);
        axis_status.direction
    }

    fn get_button(&self, button: Buttons) -> ButtonState {
        let d = ButtonState::default();
        let button_status = self.buttons.get(&button).unwrap_or(&d);
        *button_status
    }

    pub fn get_button_down(&self, axis: Buttons) -> bool {
        self.get_button(axis).pressed
    }

    pub fn get_button_up(&self, axis: Buttons) -> bool {
        !self.get_button(axis).pressed
    }

    /// Returns whether or not the button was pressed this frame,
    /// only returning true if the press happened this frame.
    ///
    /// Basically, `get_button_down()` and `get_button_up()` are level
    /// triggers, this and `get_button_released()` are edge triggered.
    pub fn get_button_pressed(&self, axis: Buttons) -> bool {
        let b = self.get_button(axis);
        b.pressed && !b.pressed_last_frame
    }

    pub fn get_button_released(&self, axis: Buttons) -> bool {
        let b = self.get_button(axis);
        !b.pressed && b.pressed_last_frame
    }

    pub fn mouse_position() {
        unimplemented!()
    }

    pub fn mouse_scroll_delta() {
        unimplemented!()
    }

    pub fn get_mouse_button() {
        unimplemented!()
    }

    pub fn get_mouse_button_down() {
        unimplemented!()
    }

    pub fn get_mouse_button_up() {
        unimplemented!()
    }

    pub fn reset_input_state(&mut self) {
        for (_axis, axis_status) in self.axes.iter_mut() {
            axis_status.position = 0.0;
            axis_status.direction = 0.0;
        }

        for (_button, button_status) in self.buttons.iter_mut() {
            button_status.pressed = false;
            button_status.pressed_last_frame = false;
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use ggez::event::*;

    #[derive(Hash, Eq, PartialEq, Copy, Clone, Debug)]
    enum Buttons {
        A,
        B,
        Select,
        Start,
    }

    #[derive(Hash, Eq, PartialEq, Copy, Clone, Debug)]
    enum Axes {
        Horz,
        Vert,
    }

    fn make_input_binding() -> InputBinding<Axes, Buttons> {
        let ib = InputBinding::<Axes, Buttons>::new()
            .bind_key_to_button(KeyCode::Z, Buttons::A)
            .bind_key_to_button(KeyCode::X, Buttons::B)
            .bind_key_to_button(KeyCode::Return, Buttons::Start)
            .bind_key_to_button(KeyCode::RShift, Buttons::Select)
            .bind_key_to_button(KeyCode::LShift, Buttons::Select)
            .bind_key_to_axis(KeyCode::Up, Axes::Vert, true)
            .bind_key_to_axis(KeyCode::Down, Axes::Vert, false)
            .bind_key_to_axis(KeyCode::Left, Axes::Horz, false)
            .bind_key_to_axis(KeyCode::Right, Axes::Horz, true);
        ib
    }

    #[test]
    fn test_input_bindings() {
        let ib = make_input_binding();
        assert_eq!(
            ib.resolve(KeyCode::Z),
            Some(InputEffect::Button(Buttons::A))
        );
        assert_eq!(
            ib.resolve(KeyCode::X),
            Some(InputEffect::Button(Buttons::B))
        );
        assert_eq!(
            ib.resolve(KeyCode::Return),
            Some(InputEffect::Button(Buttons::Start))
        );
        assert_eq!(
            ib.resolve(KeyCode::RShift),
            Some(InputEffect::Button(Buttons::Select))
        );
        assert_eq!(
            ib.resolve(KeyCode::LShift),
            Some(InputEffect::Button(Buttons::Select))
        );

        assert_eq!(
            ib.resolve(KeyCode::Up),
            Some(InputEffect::Axis(Axes::Vert, true))
        );
        assert_eq!(
            ib.resolve(KeyCode::Down),
            Some(InputEffect::Axis(Axes::Vert, false))
        );
        assert_eq!(
            ib.resolve(KeyCode::Left),
            Some(InputEffect::Axis(Axes::Horz, false))
        );
        assert_eq!(
            ib.resolve(KeyCode::Right),
            Some(InputEffect::Axis(Axes::Horz, true))
        );

        assert_eq!(ib.resolve(KeyCode::Q), None);
        assert_eq!(ib.resolve(KeyCode::W), None);
    }

    #[test]
    fn test_input_events() {
        let mut im = InputState::new();
        im.update_button_down(Buttons::A);
        assert!(im.get_button_down(Buttons::A));
        im.update_button_up(Buttons::A);
        assert!(!im.get_button_down(Buttons::A));
        assert!(im.get_button_up(Buttons::A));

        // Push the 'up' button, watch the axis
        // increase to 1.0 but not beyond
        im.update_axis_start(Axes::Vert, true);
        assert!(im.get_axis_raw(Axes::Vert) > 0.0);
        while im.get_axis(Axes::Vert) < 0.99 {
            im.update(0.16);
            assert!(im.get_axis(Axes::Vert) >= 0.0);
            assert!(im.get_axis(Axes::Vert) <= 1.0);
        }
        // Release it, watch it wind down
        im.update_axis_stop(Axes::Vert, true);
        while im.get_axis(Axes::Vert) > 0.01 {
            im.update(0.16);
            assert!(im.get_axis(Axes::Vert) >= 0.0)
        }

        // Do the same with the 'down' button.
        im.update_axis_start(Axes::Vert, false);
        while im.get_axis(Axes::Vert) > -0.99 {
            im.update(0.16);
            assert!(im.get_axis(Axes::Vert) <= 0.0);
            assert!(im.get_axis(Axes::Vert) >= -1.0);
        }

        // Test the transition from 'up' to 'down'
        im.update_axis_start(Axes::Vert, true);
        while im.get_axis(Axes::Vert) < 1.0 {
            im.update(0.16);
        }
        im.update_axis_start(Axes::Vert, false);
        im.update(0.16);
        assert!(im.get_axis(Axes::Vert) < 1.0);
        im.update_axis_stop(Axes::Vert, true);
        assert!(im.get_axis_raw(Axes::Vert) < 0.0);
        im.update_axis_stop(Axes::Vert, false);
        assert_eq!(im.get_axis_raw(Axes::Vert), 0.0);
    }

    #[test]
    fn test_button_edge_transitions() {
        let mut im: InputState<Axes, Buttons> = InputState::new();

        // Push a key, confirm it's transitioned.
        assert!(!im.get_button_down(Buttons::A));
        im.update_button_down(Buttons::A);
        assert!(im.get_button_down(Buttons::A));
        assert!(im.get_button_pressed(Buttons::A));
        assert!(!im.get_button_released(Buttons::A));

        // Update, confirm it's still down but
        // wasn't pressed this frame
        im.update(0.1);
        assert!(im.get_button_down(Buttons::A));
        assert!(!im.get_button_pressed(Buttons::A));
        assert!(!im.get_button_released(Buttons::A));

        // Release it
        im.update_button_up(Buttons::A);
        assert!(im.get_button_up(Buttons::A));
        assert!(!im.get_button_pressed(Buttons::A));
        assert!(im.get_button_released(Buttons::A));
        im.update(0.1);
        assert!(im.get_button_up(Buttons::A));
        assert!(!im.get_button_pressed(Buttons::A));
        assert!(!im.get_button_released(Buttons::A));
    }
}