1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
use auto_ops::*;

use crate::{Quaternion, Vec3, Vec4};

/// A struct representing a 4x4 matrix.
/// 
/// It's values are stored in column-major order by default,
/// as expected by OpenGL and accepted by all other APIs.
/// To change this, use feature `mat-row-major`
#[derive(Debug, Clone, Copy, PartialEq)]
#[cfg_attr(feature="serde", derive(serde::Serialize, serde::Deserialize))]
#[repr(C)]
pub struct Mat4 {
    pub values: [f32; 4*4],
}

impl Default for Mat4 {
    /// Creates the identity matrix.
    fn default() -> Self {
        Self::identity()
    }
}

#[cfg(not(feature="mat-row-major"))]
const fn cr(c: usize, r: usize) -> usize {
    r + c * 4
}
#[cfg(feature="mat-row-major")]
const fn cr(c: usize, r: usize) -> usize {
    r * 4 + c
}

impl Mat4 {
    /// Creates the identity matrix.
    pub const fn identity() -> Self {
        Self {
            values: [
                1.0, 0.0, 0.0, 0.0,
                0.0, 1.0, 0.0, 0.0,
                0.0, 0.0, 1.0, 0.0,
                0.0, 0.0, 0.0, 1.0,
            ]
        }
    }

    /// Creates a 3D translation matrix.
    pub const fn translate(t: Vec3) -> Self {
        let mut res = Self::identity();

        res.values[cr(3, 0)] = t.x;
        res.values[cr(3, 1)] = t.y;
        res.values[cr(3, 2)] = t.z;
        
        res
    }

    /// Creates a 3D rotation matrix.
    pub fn rotate(r: Quaternion) -> Self {
        let mut res = Self::identity();

        let right = r.right();
        let up = r.up();
        let fwd = r.forward();

        res.values[cr(0, 0)] = right.x;
        res.values[cr(0, 1)] = right.y;
        res.values[cr(0, 2)] = right.z;

        res.values[cr(1, 0)] = up.x;
        res.values[cr(1, 1)] = up.y;
        res.values[cr(1, 2)] = up.z;

        res.values[cr(2, 0)] = fwd.x;
        res.values[cr(2, 1)] = fwd.y;
        res.values[cr(2, 2)] = fwd.z;

        res
    }

    /// Creates a 3D scale matrix.
    pub const fn scale(s: Vec3) -> Self {
        let mut res = Self::identity();

        res.values[cr(0, 0)] = s.x;
        res.values[cr(1, 1)] = s.y;
        res.values[cr(2, 2)] = s.z;

        res
    }

    /// Creates a 3D local-to-world/object-to-world matrix.
    /// 
    /// When multiplying this matrix by a vector, it will be
    /// - scaled by `s`
    /// - rotated by `r`
    /// - translated by `t`
    /// 
    /// in this order.
    pub fn local_to_world(t: Vec3, r: Quaternion, s: Vec3) -> Self {
        Self::translate(t) * Self::rotate(r) * Self::scale(s)
    }

    /// Creates a 3D world-to-local/world-to-object matrix.
    /// 
    /// This matrix does the opposite of [`local_to_world()`](Self::local_to_world())
    pub fn world_to_local(t: Vec3, r: Quaternion, s: Vec3) -> Self {
        Self::scale(1.0 / s) * Self::rotate(-r) * Self::translate(-t)
    }

    /// Creates an orthographic projection matrix
    /// with z mapped to \[0; 1\], as expected by Vulkan.
    pub fn orthographic_vulkan(left: f32, right: f32, bottom: f32, top: f32, near: f32, far: f32) -> Self {
        let mut res = Self::identity();

        let a = 2.0 * (right - left);
        let b = (-left - right) / (right - left);
        let c = 2.0 * (top - bottom);
        let d = (-bottom - top) / (top - bottom);
        let e = 1.0 / (far - near);
        let f = -near / (far - near);

        res.values[cr(0, 0)] = a;
        res.values[cr(3, 0)] = b;

        res.values[cr(1, 1)] = c;
        res.values[cr(3, 1)] = d;

        res.values[cr(2, 2)] = e;
        res.values[cr(3, 2)] = f;

        res
    }

    /// Creates an inverse orthographics projection matrix
    /// with z mapped to \[0; 1\], as expected by Vulkan.
    /// 
    /// The world position of a uv/depth pair can be reconstructed with the same code as shown
    /// in [`inverse_perspective_vulkan()`](Self::inverse_perspective_vulkan())
    pub fn inverse_orthographic_vulkan(left: f32, right: f32, bottom: f32, top: f32, near: f32, far: f32) -> Self {
        let mut res = Self::identity();

        let a = 2.0 * (right - left);
        let b = (-left - right) / (right - left);
        let c = 2.0 * (top - bottom);
        let d = (-bottom - top) / (top - bottom);
        let e = 1.0 / (far - near);
        let f = -near / (far - near);

        res.values[cr(0, 0)] = 1.0 / a;
        res.values[cr(3, 0)] = -b / a;
        
        res.values[cr(1, 1)] = 1.0 / c;
        res.values[cr(3, 1)] = -d / c;

        res.values[cr(2, 2)] = 1.0 / e;
        res.values[cr(3, 2)] = -f / e;

        res
    }

    /// Creates a perspective projection matrix
    /// with z mapped to \[0; 1\], as expected by Vulkan.
    pub fn perspective_vulkan(fov_rad: f32, near: f32, far: f32, aspect: f32) -> Self {
        let mut res = Self::identity();
        let thfov = (fov_rad * 0.5).tan();

        res.values[cr(0, 0)] = 1.0 / (thfov * aspect);
        res.values[cr(1, 1)] = 1.0 / thfov;
        
        res.values[cr(2, 2)] = far / (far - near);
        res.values[cr(3, 2)] = (-far * near) / (far - near);

        res.values[cr(2, 3)] = 1.0;
        res.values[cr(3, 3)] = 0.0;

        res
    }

    /// Creates an inverse perspective matrix
    /// with z mapped to \[0; 1\], as expected by Vulkan.
    /// 
    /// This matrix can be used to reconstruct the world position from a uv/depth pair in a shader.
    /// This pseudo code can be used:
    /// ```GLSL
    /// vec4 clipPos = vec4(uv.xy, depth, 1.0);
    /// vec4 worldPos = invProjection * clipPos;
    /// worldPos /= worldPos.w;
    /// ```
    pub fn inverse_perspective_vulkan(fov_rad: f32, near: f32, far: f32, aspect: f32) -> Self {
        let mut res = Self::identity();

        let thfov = (fov_rad * 0.5).tan();
        let c = far / (far - near);
        let d = (-far * near) / (far - near);

        res.values[cr(0, 0)] = thfov * aspect;
        res.values[cr(1, 1)] = thfov;

        res.values[cr(3, 2)] = 1.0;

        res.values[cr(2, 2)] = 0.0;
        res.values[cr(2, 3)] = 1.0 / d;
        res.values[cr(3, 3)] = -c / d;

        res
    }

    /// Returns a value indexed by `column` and `row`
    pub const fn get(&self, column: usize, row: usize) -> f32 {
        self.values[cr(column, row)]
    }

    /// Sets the value indexed by `column` and `row` to `val`
    pub fn set(&mut self, column: usize, row: usize, val: f32) {
        self.values[cr(column, row)] = val;
    }

    /// Returns a transposed copy of `self`.
    pub fn transposed(&self) -> Mat4 {
        let mut res = Mat4::identity();

        for c in 0..4 {
            for r in 0..4 {
                res.values[cr(r, c)] = self.values[cr(c, r)];
            }
        }

        res
    }
}

impl_op_ex!(* |a: &Mat4, b: &Mat4| -> Mat4 {
    let mut res = Mat4::identity();

    for r in 0..4 {
        for c in 0..4 {
            res.values[cr(c, r)] = 
                a.values[cr(0, r)] * b.values[cr(c, 0)] +
                a.values[cr(1, r)] * b.values[cr(c, 1)] +
                a.values[cr(2, r)] * b.values[cr(c, 2)] +
                a.values[cr(3, r)] * b.values[cr(c, 3)];
        }
    }

    res
});

impl_op_ex!(* |a: &Mat4, b: &Vec4| -> Vec4 {
    Vec4 {
        x: a.values[cr(0, 0)] * b.x + a.values[cr(1, 0)] * b.y + a.values[cr(2, 0)] * b.z + a.values[cr(3, 0)] * b.w,
        y: a.values[cr(0, 1)] * b.x + a.values[cr(1, 1)] * b.y + a.values[cr(2, 1)] * b.z + a.values[cr(3, 1)] * b.w,
        z: a.values[cr(0, 2)] * b.x + a.values[cr(1, 2)] * b.y + a.values[cr(2, 2)] * b.z + a.values[cr(3, 2)] * b.w,
        w: a.values[cr(0, 3)] * b.x + a.values[cr(1, 3)] * b.y + a.values[cr(2, 3)] * b.z + a.values[cr(3, 3)] * b.w,
    }
});

impl_op_ex!(* |a: &Mat4, b: &Vec3| -> Vec3 {
    Vec3 {
        x: a.values[cr(0, 0)] * b.x + a.values[cr(1, 0)] * b.y + a.values[cr(2, 0)] * b.z,
        y: a.values[cr(0, 1)] * b.x + a.values[cr(1, 1)] * b.y + a.values[cr(2, 1)] * b.z,
        z: a.values[cr(0, 2)] * b.x + a.values[cr(1, 2)] * b.y + a.values[cr(2, 2)] * b.z,
    }
});