1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
use log::warn;

/// The order of the Fourier series used to compute e.g. auxiliary latitudes
pub const POLYNOMIAL_ORDER: usize = 6;

/// Two upper triangular matrices of polynomium coefficients for computing
/// the Fourier coefficients for (a.o.) the auxiliary latitudes
#[derive(Clone, Copy, Debug, Default)]
pub struct PolynomialCoefficients {
    pub fwd: [[f64; POLYNOMIAL_ORDER]; POLYNOMIAL_ORDER],
    pub inv: [[f64; POLYNOMIAL_ORDER]; POLYNOMIAL_ORDER],
}

/// The Fourier coefficients used when computing e.g. auxiliary latitudes
#[derive(Clone, Copy, Debug, Default)]
pub struct FourierCoefficients {
    pub fwd: [f64; POLYNOMIAL_ORDER],
    pub inv: [f64; POLYNOMIAL_ORDER],
    pub etc: [f64; 2],
}

// --- Taylor series polynomium evaluation ----

/// Compute Fourier coefficients by evaluating their corresponding
/// Taylor polynomiums
pub fn fourier_coefficients(
    arg: f64,
    coefficients: &PolynomialCoefficients,
) -> FourierCoefficients {
    let mut result = FourierCoefficients::default();
    for i in 0..POLYNOMIAL_ORDER {
        result.fwd[i] = arg * horner(arg, &coefficients.fwd[i]);
        result.inv[i] = arg * horner(arg, &coefficients.inv[i]);
    }
    result
}

/// Evaluate Σ cᵢ · xⁱ using Horner's scheme
pub fn horner(arg: f64, coefficients: &[f64]) -> f64 {
    if coefficients.is_empty() {
        return 0.;
    }
    let mut coefficients = coefficients.iter().rev();
    let mut value = *(coefficients.next().unwrap());
    for c in coefficients {
        value = value.mul_add(arg, *c);
    }
    value
}

// --- Fourier series summation using Clenshaw's recurrence ---

pub mod clenshaw {
    /// Evaluate Σ cᵢ sin( i · arg ), for i ∈ {order, ... , 1}, using Clenshaw summation
    pub fn sin(arg: f64, coefficients: &[f64]) -> f64 {
        let (sin_arg, cos_arg) = arg.sin_cos();
        let x = 2.0 * cos_arg;
        let mut c0 = 0.0;
        let mut c1 = 0.0;

        for c in coefficients.iter().rev() {
            (c1, c0) = (c0, x.mul_add(c0, c - c1));
        }
        sin_arg * c0
    }

    // Evaluate Σ cᵢ cos( i · arg ), for i ∈ {order, ... , 1}, using Clenshaw summation
    pub fn cos(arg: f64, coefficients: &[f64]) -> f64 {
        let cos_arg = arg.cos();
        let x = 2.0 * cos_arg;
        let mut c0 = 0.0;
        let mut c1 = 0.0;

        for c in coefficients.iter().rev() {
            (c1, c0) = (c0, x.mul_add(c0, c - c1));
        }
        cos_arg * c0 - c1
    }

    /// Evaluate Σ cᵢ Sin( i · arg ), for i ∈ {order, ... , 1}, using Clenshaw summation.
    /// i.e. a series of complex sines with real coefficients
    #[allow(unused_assignments)] // For symmetric initialization of hr2, hi2
    pub fn complex_sin(arg: [f64; 2], coefficients: &[f64]) -> [f64; 2] {
        // Prepare the trigonometric factors
        let (sin_r, cos_r) = arg[0].sin_cos();
        let sinh_i = arg[1].sinh();
        let cosh_i = arg[1].cosh();
        let r = 2. * cos_r * cosh_i;
        let i = -2. * sin_r * sinh_i;
        let mut coefficients = coefficients.iter().rev();

        // Handle zero length series by conventionally assigning them the sum of 0
        let Some(c) = coefficients.next() else {
            return [0.; 2];
        };

        // Initialize the recurrence coefficients
        let (mut hr2, mut hr1, mut hr) = (0., 0., *c);
        let (mut hi2, mut hi1, mut hi) = (0., 0., 0.);

        for c in coefficients {
            // Rotate the recurrence coefficients
            (hr2, hi2, hr1, hi1) = (hr1, hi1, hr, hi);

            // Update the recurrent sum
            hr = -hr2 + r * hr1 - i * hi1 + c;
            hi = -hi2 + i * hr1 + r * hi1;
        }

        // Finalize the sum
        let r = sin_r * cosh_i;
        let i = cos_r * sinh_i;
        [r * hr - i * hi, r * hi + i * hr]
    }

    // --- Clenshaw versions optimized for Transverse Mercator ---

    /// Evaluate Σ cᵢ sin( i · arg ), for i ∈ {order, ... , 1}, using Clenshaw summation
    ///
    /// Functionally identical to [clenshaw_sin](crate::math::clenshaw::sin), but
    /// takes advantage trigonometric factors, which are conveniently computed ahead-of-call in
    /// the Transverse Mercator code, tmerc. Since tmerc is so widely used, this optimization
    /// makes good sense, despite the more clumsy call signature. Also, for the same reason
    /// we assert that, despite that compiler heuristics may beg to differ, this function should
    /// always be inlined.
    #[inline(always)]
    pub fn sin_optimized_for_tmerc(trig: [f64; 2], coefficients: &[f64]) -> f64 {
        // Unpack the trigonometric factors for better readability.
        let (sin_arg, cos_arg) = (trig[0], trig[1]);
        let x = 2.0 * cos_arg;
        let mut c0 = 0.0;
        let mut c1 = 0.0;

        for c in coefficients.iter().rev() {
            (c1, c0) = (c0, x.mul_add(c0, c - c1));
        }
        sin_arg * c0
    }

    /// Evaluate Σ cᵢ Sin( i · arg ), for i ∈ {order, ... , 1}, using Clenshaw summation.
    /// i.e. a series of complex sines with real coefficients.
    ///
    /// Functionally identical to [clenshaw_complex_sin](crate::math::clenshaw::complex_sin), but
    /// takes advantage of some trigonometric and hyperbolic factors, which are conveniently
    /// computed ahead-of-call in the Transverse Mercator code, tmerc. Since tmerc is so widely
    /// used, this optimization makes good sense, despite the more clumsy call signature. Also,
    /// we assert that, despite that compiler heuristics may beg to differ, this function should
    /// always be inlined.
    #[allow(unused_assignments)] // For symmetric initialization of hr2, hi2
    #[inline(always)]
    pub fn complex_sin_optimized_for_tmerc(
        trig: [f64; 2],
        hyp: [f64; 2],
        coefficients: &[f64],
    ) -> [f64; 2] {
        // Unpack the trigonometric and hyperbolic factors for better readability.
        let (sin_r, cos_r) = (trig[0], trig[1]);
        let (sinh_i, cosh_i) = (hyp[0], hyp[1]);
        let r = 2. * cos_r * cosh_i;
        let i = -2. * sin_r * sinh_i;

        // Prepare the iterator for summation in reverse order
        let mut coefficients = coefficients.iter().rev();

        // Handle zero length series by conventionally assigning them the sum of 0
        let Some(c) = coefficients.next() else {
            return [0.; 2];
        };

        // Initialize the recurrence coefficients
        let (mut hr2, mut hr1, mut hr) = (0., 0., *c);
        let (mut hi2, mut hi1, mut hi) = (0., 0., 0.);

        for c in coefficients {
            // Rotate the recurrence coefficients
            (hr2, hi2, hr1, hi1) = (hr1, hi1, hr, hi);

            // Update the recurrent sum
            hr = -hr2 + r * hr1 - i * hi1 + c;
            hi = -hi2 + i * hr1 + r * hi1;
        }

        // Finalize the sum
        let r = sin_r * cosh_i;
        let i = cos_r * sinh_i;
        [r * hr - i * hi, r * hi + i * hr]
    }
}

/// The Gudermannian function (often written as gd), is the work horse for computations involving
/// the isometric latitude (i.e. the vertical coordinate of the Mercator projection)
pub mod gudermannian {
    pub fn fwd(arg: f64) -> f64 {
        arg.sinh().atan()
    }

    pub fn inv(arg: f64) -> f64 {
        arg.tan().asinh()
    }
}

pub mod angular {
    /// Simplistic transformation from degrees, minutes and seconds-with-decimals
    /// to degrees-with-decimals. No sanity check: Sign taken from degree-component,
    /// minutes forced to unsigned by i16 type, but passing a negative value for
    /// seconds leads to undefined behaviour.
    pub fn dms_to_dd(d: i32, m: u16, s: f64) -> f64 {
        d.signum() as f64 * (d.abs() as f64 + (m as f64 + s / 60.) / 60.)
    }

    /// Simplistic transformation from degrees and minutes-with-decimals
    /// to degrees-with-decimals. No sanity check: Sign taken from
    /// degree-component, but passing a negative value for minutes leads
    /// to undefined behaviour.
    pub fn dm_to_dd(d: i32, m: f64) -> f64 {
        d.signum() as f64 * (d.abs() as f64 + (m / 60.))
    }

    /// Simplistic transformation from the NMEA DDDMM.mmm format to
    /// to degrees-with-decimals. No sanity check: Invalid input,
    /// such as 5575.75 (where the number of minutes exceed 60) leads
    /// to undefined behaviour.
    pub fn nmea_to_dd(nmea: f64) -> f64 {
        let sign = nmea.signum();
        let dm = nmea.abs() as u32;
        let fraction = nmea.abs() - dm as f64;
        let d = dm / 100;
        let m = (dm - d * 100) as f64 + fraction;
        sign * (d as f64 + (m / 60.))
    }

    /// Transformation from degrees-with-decimals to the NMEA DDDMM.mmm format.
    pub fn dd_to_nmea(dd: f64) -> f64 {
        let sign = dd.signum();
        let dd = dd.abs();
        let d = dd.floor();
        let m = (dd - d) * 60.;
        sign * (d * 100. + m)
    }

    /// Simplistic transformation from the extended NMEA DDDMMSS.sss
    /// format to degrees-with-decimals. No sanity check: Invalid input,
    /// such as 557575.75 (where the number of minutes and seconds both
    /// exceed 60) leads to undefined behaviour.
    pub fn nmeass_to_dd(nmeass: f64) -> f64 {
        let sign = nmeass.signum();
        let dms = nmeass.abs() as u32;
        let fraction = nmeass.abs() - dms as f64;
        let d = dms / 10000;
        let ms = dms - d * 10000;
        let m = ms / 100;
        let s = (ms - m * 100) as f64 + fraction;
        sign * (d as f64 + ((s / 60.) + m as f64) / 60.)
    }

    /// Transformation from degrees-with-decimals to the extended
    /// NMEA DDDMMSS.sss format.
    pub fn dd_to_nmeass(dd: f64) -> f64 {
        let sign = dd.signum();
        let dd = dd.abs();
        let d = dd.floor();
        let mm = (dd - d) * 60.;
        let m = mm.floor();
        let s = (mm - m) * 60.;
        sign * (d * 10000. + m * 100. + s)
    }

    /// normalize arbitrary angles to [-π, π):
    pub fn normalize_symmetric(angle: f64) -> f64 {
        use std::f64::consts::PI;
        let angle = (angle + PI) % (2.0 * PI);
        angle - PI * angle.signum()
    }

    /// normalize arbitrary angles to [0, 2π):
    pub fn normalize_positive(angle: f64) -> f64 {
        use std::f64::consts::PI;
        let angle = angle % (2.0 * PI);
        if angle < 0. {
            return angle + 2.0 * PI;
        }
        angle
    }
}

// ----- A N C I L L A R Y   F U N C T I O N S -----------------------------------------

// ts is the equivalent of Charles Karney's PROJ function `pj_tsfn`.
// It determines the function ts(phi) as defined in Snyder (1987),
// Eq. (7-10)
//
// ts is the exponential of the negated isometric latitude, i.e.
// exp(-𝜓), but evaluated in a numerically more stable way than
// the naive ellps.isometric_latitude(...).exp()
//
// This version is essentially identical to Charles Karney's PROJ
// version, including the majority of the comments.
//
// Inputs:
//   (sin 𝜙, cos 𝜙): trigs of geographic latitude
//   e: eccentricity of the ellipsoid
// Output:
//   ts: exp(-𝜓)  =  1 / (tan 𝜒 + sec 𝜒)
//   where 𝜓 is the isometric latitude (dimensionless)
//   and 𝜒 is the conformal latitude (radians)
//
// Here the isometric latitude is defined by
//   𝜓 = log(
//           tan(𝜋/4 + 𝜙/2) *
//           ( (1 - e × sin 𝜙) / (1 + e × sin 𝜙) ) ^ (e/2)
//       )
//     = asinh(tan 𝜙) - e × atanh(e × sin 𝜙)
//     = asinh(tan 𝜒)
//
// where 𝜒 is the conformal latitude
//
pub(crate) fn ts(sincos: (f64, f64), e: f64) -> f64 {
    // exp(-asinh(tan 𝜙))
    //    = 1 / (tan 𝜙 + sec 𝜙)
    //    = cos 𝜙 / (1 + sin 𝜙)  good for 𝜙 > 0
    //    = (1 - sin 𝜙) / cos 𝜙  good for 𝜙 < 0
    let factor = if sincos.0 > 0. {
        sincos.1 / (1. + sincos.0)
    } else {
        (1. - sincos.0) / sincos.1
    };
    (e * (e * sincos.0).atanh()).exp() * factor
}

// Snyder (1982) eq. 12-15, PROJ's pj_msfn()
pub(crate) fn pj_msfn(sincos: (f64, f64), es: f64) -> f64 {
    sincos.1 / (1. - sincos.0 * sincos.0 * es).sqrt()
}

// Equivalent to the PROJ pj_phi2 function
pub(crate) fn pj_phi2(ts0: f64, e: f64) -> f64 {
    sinhpsi_to_tanphi((1. / ts0 - ts0) / 2., e).atan()
}

// Snyder (1982) eq. ??, PROJ's pj_qsfn()
pub(crate) fn qs(sinphi: f64, e: f64) -> f64 {
    let es = e * e;
    let one_es = 1.0 - es;

    if e < 1e-7 {
        return 2.0 * sinphi;
    }

    let con = e * sinphi;
    let div1 = 1.0 - con * con;
    let div2 = 1.0 + con;

    one_es * (sinphi / div1 - (0.5 / e) * ((1. - con) / div2).ln())
}

// Ancillary function for computing the inverse isometric latitude. Follows
// [Karney, 2011](crate::Bibliography::Kar11), and the PROJ implementation
// in proj/src/phi2.cpp.
// Needs crate-visibility as it is also used in crate::ellipsoid::latitudes
pub(crate) fn sinhpsi_to_tanphi(taup: f64, e: f64) -> f64 {
    // min iterations = 1, max iterations = 2; mean = 1.954
    const MAX_ITER: usize = 5;

    // rooteps, tol and tmax are compile time constants, but currently
    // Rust cannot const-evaluate powers and roots, so we must either
    // evaluate these "constants" as lazy_statics, or just swallow the
    // penalty of an extra sqrt and two divisions on each call.
    // If this shows unbearable, we can just also assume IEEE-64 bit
    // arithmetic, and set rooteps = 0.000000014901161193847656
    let rooteps: f64 = f64::EPSILON.sqrt();
    let tol: f64 = rooteps / 10.; // the criterion for Newton's method
    let tmax: f64 = 2. / rooteps; // threshold for large arg limit exact

    let e2m = 1. - e * e;
    let stol = tol * taup.abs().max(1.0);

    // The initial guess.  70 corresponds to chi = 89.18 deg
    let mut tau = if taup.abs() > 70. {
        taup * (e * e.atanh()).exp()
    } else {
        taup / e2m
    };

    // Handle +/-inf, nan, and e = 1
    if (tau.abs() >= tmax) || tau.is_nan() {
        return tau;
    }

    for _ in 0..MAX_ITER {
        let tau1 = (1. + tau * tau).sqrt();
        let sig = (e * (e * tau / tau1).atanh()).sinh();
        let taupa = (1. + sig * sig).sqrt() * tau - sig * tau1;
        let dtau =
            (taup - taupa) * (1. + e2m * (tau * tau)) / (e2m * tau1 * (1. + taupa * taupa).sqrt());
        tau += dtau;

        if (dtau.abs() < stol) || tau.is_nan() {
            return tau;
        }
    }
    f64::NAN
}

/// Parse sexagesimal degrees, i.e. degrees, minutes and seconds in the
/// format 45:30:36, 45:30:36N,-45:30:36 etc.
pub fn parse_sexagesimal(angle: &str) -> f64 {
    // Degrees, minutes, and seconds
    let mut dms = [0.0, 0.0, 0.0];
    let mut angle = angle.trim();

    // Empty?
    let n = angle.len();
    if n == 0 {
        return f64::NAN;
    }

    // Handle NSEW indicators
    let mut postfix_sign = 1.0;
    if "wWsSeEnN".contains(&angle[n - 1..]) {
        if "wWsS".contains(&angle[n - 1..]) {
            postfix_sign = -1.0;
        }
        angle = &angle[..n - 1];
    }

    // Split into as many elements as given: D, D:M, D:M:S
    for (i, element) in angle.split(':').enumerate() {
        if i < 3 {
            if let Ok(v) = element.parse::<f64>() {
                dms[i] = v;
                continue;
            }
        }
        // More than 3 elements?
        warn!("Cannot parse {angle} as a real number or sexagesimal angle");
        return f64::NAN;
    }

    // Sexagesimal conversion if we have more than one element. Otherwise
    // decay gracefully to plain real/f64 conversion
    let sign = dms[0].signum() * postfix_sign;
    sign * (dms[0].abs() + (dms[1] + dms[2] / 60.0) / 60.0)
}

// ----- Tests ---------------------------------------------------------------------

#[cfg(test)]
mod tests {
    use super::*;
    use crate::{Ellipsoid, Error};

    #[test]
    fn test_parse_sexagesimal() -> Result<(), Error> {
        assert_eq!(1.51, parse_sexagesimal("1:30:36"));
        assert_eq!(-1.51, parse_sexagesimal("-1:30:36"));
        assert_eq!(1.51, parse_sexagesimal("1:30:36N"));
        assert_eq!(-1.51, parse_sexagesimal("1:30:36S"));
        assert_eq!(1.51, parse_sexagesimal("1:30:36e"));
        assert_eq!(-1.51, parse_sexagesimal("1:30:36w"));
        assert!(parse_sexagesimal("q1:30:36w").is_nan());

        Ok(())
    }

    #[test]
    fn test_horner() -> Result<(), Error> {
        // Coefficients for 3x² + 2x + 1
        let coefficients = [1_f64, 2., 3.];
        assert_eq!(horner(1., &coefficients), 6.);
        assert_eq!(horner(2., &coefficients), 17.);
        assert_eq!(horner(-2., &coefficients), 9.);

        assert_eq!(horner(-2., &[1_f64]), 1.);
        assert_eq!(horner(-2., &[3_f64]), 3.);

        assert_eq!(horner(-2., &[]), 0.);

        // The normalized meridian arc unit
        let e = Ellipsoid::named("GRS80")?;
        let n = e.third_flattening();
        let nn = n * n;
        let d = [1., 1. / 4., 1. / 64., 1. / 256., 25. / 16384.];
        let result = horner(nn, &d) / (1. + n);
        let expected = 0.9983242984230415;
        assert!((result - expected).abs() < 1e-14);

        Ok(())
    }

    #[test]
    fn test_clenshaw() -> Result<(), Error> {
        // Coefficients for 1sin(x) + 2sin(2x) + 3sin(3x)
        let coefficients = [1., 2., 3.];
        assert_eq!(clenshaw::sin(0., &[]), 0.);
        assert_eq!(clenshaw::sin(1., &[]), 0.);
        assert_eq!(clenshaw::sin(0.5, &[]), 0.);

        let x = 30_f64.to_radians();

        // Clenshaw sine-series summation
        let result = 1.0 * x.sin() + 2.0 * (2.0 * x).sin() + 3.0 * (3.0 * x).sin();
        assert!((clenshaw::sin(x, &coefficients) - result).abs() < 1e-14);

        // Clenshaw cosine-series summation
        let result = 1.0 * x.cos() + 2.0 * (2.0 * x).cos() + 3.0 * (3.0 * x).cos();
        assert!((clenshaw::cos(x, &coefficients) - result).abs() < 1e-14);

        // Clenshaw complex sine summation
        let coefficients = [6., 5., 4., 3., 2., 1.];
        let arg = [30f64.to_radians(), 60f64.to_radians()];
        // Canonical result from Poder/Engsager implementation
        let r = 248.658846388817693;
        let i = -463.436347907636559;
        // Let's see if we can reproduce that...
        let sum = clenshaw::complex_sin(arg, &coefficients);
        assert!((sum[0] - r).abs() < 1e-14);
        assert!((sum[1] - i).abs() < 1e-14);

        // Canonical result for complex cosine clenshaw, from Poder/Engsager implementation
        // let r = -461.338884918028953;
        // let i = -246.855278649982154;

        Ok(())
    }

    #[test]
    fn test_angular() {
        // dms
        assert_eq!(angular::dms_to_dd(55, 30, 36.), 55.51);
        assert_eq!(angular::dm_to_dd(55, 30.60), 55.51);

        // nmea + nmeass
        assert!((angular::nmea_to_dd(5530.60) - 55.51).abs() < 1e-10);
        assert!((angular::nmea_to_dd(15530.60) - 155.51).abs() < 1e-10);
        assert!((angular::nmea_to_dd(-15530.60) + 155.51).abs() < 1e-10);
        assert!((angular::nmeass_to_dd(553036.0) - 55.51).abs() < 1e-10);
        assert_eq!(angular::dd_to_nmea(55.5025), 5530.15);
        assert_eq!(angular::dd_to_nmea(-55.5025), -5530.15);
        assert_eq!(angular::dd_to_nmeass(55.5025), 553009.);
        assert_eq!(angular::dd_to_nmeass(-55.51), -553036.);

        assert_eq!(angular::nmea_to_dd(5500.), 55.);
        assert_eq!(angular::nmea_to_dd(-5500.), -55.);
        assert_eq!(angular::nmea_to_dd(5530.60), -angular::nmea_to_dd(-5530.60));
        assert_eq!(
            angular::nmeass_to_dd(553036.),
            -angular::nmeass_to_dd(-553036.00)
        );
    }
}