use num_traits::{Float, FromPrimitive};
use ::Point;
pub trait HaversineDistance<T, Rhs = Self> {
fn haversine_distance(&self, rhs: &Rhs) -> T;
}
impl<T> HaversineDistance<T, Point<T>> for Point<T>
where
T: Float + FromPrimitive,
{
fn haversine_distance(&self, rhs: &Point<T>) -> T {
let two = T::one() + T::one();
let theta1 = self.y().to_radians();
let theta2 = rhs.y().to_radians();
let delta_theta = (rhs.y() - self.y()).to_radians();
let delta_lambda = (rhs.x() - self.x()).to_radians();
let a = (delta_theta / two).sin().powi(2)
+ theta1.cos() * theta2.cos() * (delta_lambda / two).sin().powi(2);
let c = two * a.sqrt().asin();
T::from(6371000.0).unwrap() * c
}
}
#[cfg(test)]
mod test {
use ::Point;
use algorithm::haversine_distance::HaversineDistance;
#[test]
fn distance1_test() {
let a = Point::<f64>::new(0., 0.);
let b = Point::<f64>::new(1., 0.);
assert_relative_eq!(
a.haversine_distance(&b),
111194.92664455874_f64,
epsilon = 1.0e-6
);
}
#[test]
fn distance2_test() {
let a = Point::new(-72.1235, 42.3521);
let b = Point::new(72.1260, 70.612);
assert_relative_eq!(
a.haversine_distance(&b),
7130570.458772508_f64,
epsilon = 1.0e-6
);
}
#[test]
fn distance3_test() {
let a = Point::<f64>::new(-77.036585, 38.897448);
let b = Point::<f64>::new(-77.009080, 38.889825);
assert_relative_eq!(
a.haversine_distance(&b),
2526.820014113592_f64,
epsilon = 1.0e-6
);
}
#[test]
fn distance3_test_f32() {
let a = Point::<f32>::new(-77.036585, 38.897448);
let b = Point::<f32>::new(-77.009080, 38.889825);
assert_relative_eq!(a.haversine_distance(&b), 2526.8318_f32, epsilon = 1.0e-6);
}
}