use num_traits::{Float, FromPrimitive};
use types::Point;
pub trait HaversineDistance<T, Rhs = Self>
{
fn haversine_distance(&self, rhs: &Rhs) -> T;
}
impl<T> HaversineDistance<T, Point<T>> for Point<T>
where T: Float + FromPrimitive
{
fn haversine_distance(&self, rhs: &Point<T>) -> T {
let (lhs_sin, lhs_cos) = self.y().to_radians().sin_cos();
let (rhs_sin, rhs_cos) = rhs.y().to_radians().sin_cos();
let delta_lng = rhs.lng() - self.lng();
let a = (lhs_sin * rhs_sin) + (lhs_cos * rhs_cos) * delta_lng.to_radians().cos();
T::from_i32(6378137).unwrap() * a.acos().min(T::one())
}
}
#[cfg(test)]
mod test {
use types::Point;
use algorithm::haversine_distance::HaversineDistance;
#[test]
fn distance1_test() {
let a = Point::<f64>::new(0., 0.);
let b = Point::<f64>::new(1., 0.);
assert_relative_eq!(a.haversine_distance(&b), 111319.49079326246_f64, epsilon = 1.0e-6);
}
#[test]
fn distance2_test() {
let a = Point::new(-72.1235, 42.3521);
let b = Point::new(72.1260, 70.612);
assert_relative_eq!(a.haversine_distance(&b), 6378137_f64, epsilon = 1.0e-6);
}
}