use num_traits::{Float, FromPrimitive};
use types::{Point, LineString, Polygon, MultiPolygon, Bbox};
use algorithm::area::Area;
use algorithm::distance::Distance;
pub trait Centroid<T: Float> {
fn centroid(&self) -> Option<Point<T>>;
}
impl<T> Centroid<T> for LineString<T>
where T: Float
{
fn centroid(&self) -> Option<Point<T>> {
let vect = &self.0;
if vect.is_empty() {
return None;
}
if vect.len() == 1 {
Some(Point::new(vect[0].x(),
vect[0].y()))
} else {
let mut sum_x = T::zero();
let mut sum_y = T::zero();
let mut total_length = T::zero();
for ps in vect.windows(2) {
let segment_len = ps[0].distance(&ps[1]);
let (x1, y1, x2, y2) = (ps[0].x(), ps[0].y(), ps[1].x(), ps[1].y());
total_length = total_length + segment_len;
sum_x = sum_x + segment_len * ((x1 + x2) / (T::one() + T::one()));
sum_y = sum_y + segment_len * ((y1 + y2) / (T::one() + T::one()));
}
Some(Point::new(sum_x / total_length, sum_y / total_length))
}
}
}
impl<T> Centroid<T> for Polygon<T>
where T: Float + FromPrimitive
{
fn centroid(&self) -> Option<Point<T>> {
let linestring = &self.exterior;
let vect = &linestring.0;
if vect.is_empty() {
return None;
}
if vect.len() == 1 {
Some(Point::new(vect[0].x(), vect[0].y()))
} else {
let area = self.area();
let mut sum_x = T::zero();
let mut sum_y = T::zero();
for ps in vect.windows(2) {
let tmp = ps[0].x() * ps[1].y() - ps[1].x() * ps[0].y();
sum_x = sum_x + ((ps[1].x() + ps[0].x()) * tmp);
sum_y = sum_y + ((ps[1].y() + ps[0].y()) * tmp);
}
let six = T::from_i32(6).unwrap();
Some(Point::new(sum_x / (six * area), sum_y / (six * area)))
}
}
}
impl<T> Centroid<T> for MultiPolygon<T>
where T: Float + FromPrimitive
{
fn centroid(&self) -> Option<Point<T>> {
let mut sum_x = T::zero();
let mut sum_y = T::zero();
let mut total_area = T::zero();
let vect = &self.0;
if vect.is_empty() {
return None;
}
for poly in &self.0 {
let area = poly.area().abs();
total_area = total_area + area;
if let Some(p) = poly.centroid() {
sum_x = sum_x + area * p.x();
sum_y = sum_y + area * p.y();
}
}
Some(Point::new(sum_x / total_area, sum_y / total_area))
}
}
impl<T> Centroid<T> for Bbox<T>
where T: Float
{
fn centroid(&self) -> Option<Point<T>> {
let two = T::one() + T::one();
Some(Point::new((self.xmax + self.xmin)/two, (self.ymax + self.ymin)/two))
}
}
#[cfg(test)]
mod test {
use types::{COORD_PRECISION, Coordinate, Point, LineString, Polygon, MultiPolygon, Bbox};
use algorithm::centroid::Centroid;
use algorithm::distance::Distance;
#[test]
fn empty_linestring_test() {
let vec = Vec::<Point<f64>>::new();
let linestring = LineString(vec);
let centroid = linestring.centroid();
assert!(centroid.is_none());
}
#[test]
fn linestring_one_point_test() {
let p = Point::new(40.02f64, 116.34);
let mut vect = Vec::<Point<f64>>::new();
vect.push(p);
let linestring = LineString(vect);
let centroid = linestring.centroid();
assert_eq!(centroid, Some(p));
}
#[test]
fn linestring_test() {
let p = |x| Point(Coordinate { x: x, y: 1. });
let linestring = LineString(vec![p(1.), p(7.), p(8.), p(9.), p(10.), p(11.)]);
assert_eq!(linestring.centroid(),
Some(Point(Coordinate { x: 6., y: 1. })));
}
#[test]
fn empty_polygon_test() {
let v1 = Vec::new();
let v2 = Vec::new();
let linestring = LineString::<f64>(v1);
let poly = Polygon::new(linestring, v2);
assert!(poly.centroid().is_none());
}
#[test]
fn polygon_one_point_test() {
let p = Point(Coordinate { x: 2., y: 1. });
let v = Vec::new();
let linestring = LineString(vec![p]);
let poly = Polygon::new(linestring, v);
assert_eq!(poly.centroid(), Some(p));
}
#[test]
fn polygon_test() {
let p = |x, y| Point(Coordinate { x: x, y: y });
let v = Vec::new();
let linestring = LineString(vec![p(0., 0.), p(2., 0.), p(2., 2.), p(0., 2.), p(0., 0.)]);
let poly = Polygon::new(linestring, v);
assert_eq!(poly.centroid(), Some(p(1., 1.)));
}
#[test]
fn empty_multipolygon_polygon_test() {
assert!(MultiPolygon::<f64>(Vec::new()).centroid().is_none());
}
#[test]
fn multipolygon_one_polygon_test() {
let p = |x, y| Point(Coordinate { x: x, y: y });
let linestring = LineString(vec![p(0., 0.), p(2., 0.), p(2., 2.), p(0., 2.), p(0., 0.)]);
let poly = Polygon::new(linestring, Vec::new());
assert_eq!(MultiPolygon(vec![poly]).centroid(), Some(p(1., 1.)));
}
#[test]
fn multipolygon_two_polygons_test() {
let p = |x, y| Point(Coordinate { x: x, y: y });
let linestring = LineString(vec![p(2., 1.), p(5., 1.), p(5., 3.), p(2., 3.), p(2., 1.)]);
let poly1 = Polygon::new(linestring, Vec::new());
let linestring = LineString(vec![p(7., 1.), p(8., 1.), p(8., 2.), p(7., 2.), p(7., 1.)]);
let poly2 = Polygon::new(linestring, Vec::new());
let dist = MultiPolygon(vec![poly1, poly2]).centroid().unwrap().distance(&p(4.07142857142857, 1.92857142857143));
assert!(dist < COORD_PRECISION);
}
#[test]
fn multipolygon_two_polygons_of_opposite_clockwise_test() {
let p = |x, y| Point(Coordinate { x: x, y: y });
let linestring = LineString(vec![p(0., 0.), p(2., 0.), p(2., 2.), p(0., 2.), p(0., 0.)]);
let poly1 = Polygon::new(linestring, Vec::new());
let linestring = LineString(vec![p(0., 0.), p(-2., 0.), p(-2., 2.), p(0., 2.), p(0., 0.)]);
let poly2 = Polygon::new(linestring, Vec::new());
assert_eq!(MultiPolygon(vec![poly1, poly2]).centroid(), Some(p(0., 1.)));
}
#[test]
fn bbox_test() {
let bbox = Bbox{ xmax: 4., xmin: 0., ymax: 100., ymin: 50.};
let point = Point(Coordinate { x: 2., y: 75. });
assert_eq!(point, bbox.centroid().unwrap());
}
}