geo 0.23.1

Geospatial primitives and algorithms
Documentation
use super::kernels::*;
use crate::coords_iter::CoordsIter;
use crate::utils::EitherIter;
use crate::{CoordNum, LineString, Point};
use geo_types::PointsIter;
use std::iter::Rev;

/// Iterates through a list of `Point`s
#[allow(missing_debug_implementations)]
pub struct Points<'a, T>(pub(crate) EitherIter<PointsIter<'a, T>, Rev<PointsIter<'a, T>>>)
where
    T: CoordNum + 'a;

impl<'a, T> Iterator for Points<'a, T>
where
    T: CoordNum,
{
    type Item = Point<T>;

    #[inline]
    fn next(&mut self) -> Option<Self::Item> {
        self.0.next()
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        self.0.size_hint()
    }
}

impl<'a, T> ExactSizeIterator for Points<'a, T>
where
    T: CoordNum,
{
    #[inline]
    fn len(&self) -> usize {
        self.0.len()
    }
}

/// How a linestring is wound, clockwise or counter-clockwise
#[derive(PartialEq, Clone, Debug, Eq, Copy)]
pub enum WindingOrder {
    Clockwise,
    CounterClockwise,
}

impl WindingOrder {
    #[allow(dead_code)]
    pub(crate) fn inverse(&self) -> Self {
        match self {
            WindingOrder::Clockwise => WindingOrder::CounterClockwise,
            WindingOrder::CounterClockwise => WindingOrder::Clockwise,
        }
    }
}

/// Determine and operate on how a [`LineString`] is
/// wound. This functionality, and our implementation is
/// based on [CGAL's Polygon_2::orientation].
///
/// [CGAL's Polygon_2::orientation]: //doc.cgal.org/latest/Polygon/classCGAL_1_1Polygon__2.html#a4ce8b4b8395406243ac16c2a120ffc15
pub trait Winding {
    type Scalar: CoordNum;

    /// Return the winding order of this object if it
    /// contains at least three distinct coordinates, and
    /// `None` otherwise.
    fn winding_order(&self) -> Option<WindingOrder>;

    /// True iff this is wound clockwise
    fn is_cw(&self) -> bool {
        self.winding_order() == Some(WindingOrder::Clockwise)
    }

    /// True iff this is wound counterclockwise
    fn is_ccw(&self) -> bool {
        self.winding_order() == Some(WindingOrder::CounterClockwise)
    }

    /// Iterate over the points in a clockwise order
    ///
    /// The object isn't changed, and the points are returned either in order, or in reverse
    /// order, so that the resultant order makes it appear clockwise
    fn points_cw(&self) -> Points<Self::Scalar>;

    /// Iterate over the points in a counter-clockwise order
    ///
    /// The object isn't changed, and the points are returned either in order, or in reverse
    /// order, so that the resultant order makes it appear counter-clockwise
    fn points_ccw(&self) -> Points<Self::Scalar>;

    /// Change this object's points so they are in clockwise winding order
    fn make_cw_winding(&mut self);

    /// Change this line's points so they are in counterclockwise winding order
    fn make_ccw_winding(&mut self);

    /// Return a clone of this object, but in the specified winding order
    fn clone_to_winding_order(&self, winding_order: WindingOrder) -> Self
    where
        Self: Sized + Clone,
    {
        let mut new: Self = self.clone();
        new.make_winding_order(winding_order);
        new
    }

    /// Change the winding order so that it is in this winding order
    fn make_winding_order(&mut self, winding_order: WindingOrder) {
        match winding_order {
            WindingOrder::Clockwise => self.make_cw_winding(),
            WindingOrder::CounterClockwise => self.make_ccw_winding(),
        }
    }
}

impl<T, K> Winding for LineString<T>
where
    T: HasKernel<Ker = K>,
    K: Kernel<T>,
{
    type Scalar = T;

    fn winding_order(&self) -> Option<WindingOrder> {
        // If linestring has at most 3 coords, it is either
        // not closed, or is at most two distinct points.
        // Either way, the WindingOrder is unspecified.
        if self.coords_count() < 4 || !self.is_closed() {
            return None;
        }

        let increment = |x: &mut usize| {
            *x += 1;
            if *x >= self.coords_count() {
                *x = 0;
            }
        };

        let decrement = |x: &mut usize| {
            if *x == 0 {
                *x = self.coords_count() - 1;
            } else {
                *x -= 1;
            }
        };

        use crate::utils::least_index;
        let i = least_index(&self.0);

        let mut next = i;
        increment(&mut next);
        while self.0[next] == self.0[i] {
            if next == i {
                // We've looped too much. There aren't
                // enough unique coords to compute orientation.
                return None;
            }
            increment(&mut next);
        }

        let mut prev = i;
        decrement(&mut prev);
        while self.0[prev] == self.0[i] {
            // Note: we don't need to check if prev == i as
            // the previous loop succeeded, and so we have
            // at least two distinct elements in the list
            decrement(&mut prev);
        }

        match K::orient2d(self.0[prev], self.0[i], self.0[next]) {
            Orientation::CounterClockwise => Some(WindingOrder::CounterClockwise),
            Orientation::Clockwise => Some(WindingOrder::Clockwise),
            _ => None,
        }
    }

    /// Iterate over the points in a clockwise order
    ///
    /// The Linestring isn't changed, and the points are returned either in order, or in reverse
    /// order, so that the resultant order makes it appear clockwise
    fn points_cw(&self) -> Points<Self::Scalar> {
        match self.winding_order() {
            Some(WindingOrder::CounterClockwise) => Points(EitherIter::B(self.points().rev())),
            _ => Points(EitherIter::A(self.points())),
        }
    }

    /// Iterate over the points in a counter-clockwise order
    ///
    /// The Linestring isn't changed, and the points are returned either in order, or in reverse
    /// order, so that the resultant order makes it appear counter-clockwise
    fn points_ccw(&self) -> Points<Self::Scalar> {
        match self.winding_order() {
            Some(WindingOrder::Clockwise) => Points(EitherIter::B(self.points().rev())),
            _ => Points(EitherIter::A(self.points())),
        }
    }

    /// Change this line's points so they are in clockwise winding order
    fn make_cw_winding(&mut self) {
        if let Some(WindingOrder::CounterClockwise) = self.winding_order() {
            self.0.reverse();
        }
    }

    /// Change this line's points so they are in counterclockwise winding order
    fn make_ccw_winding(&mut self) {
        if let Some(WindingOrder::Clockwise) = self.winding_order() {
            self.0.reverse();
        }
    }
}

#[cfg(test)]
mod test {
    use super::*;
    use crate::Point;

    #[test]
    fn robust_winding_float() {
        // 3 points forming a triangle
        let a = Point::new(0., 0.);
        let b = Point::new(2., 0.);
        let c = Point::new(1., 2.);

        // Verify open linestrings return None
        let mut ls = LineString::from(vec![a.0, b.0, c.0]);
        assert!(ls.winding_order().is_none());

        ls.0.push(ls.0[0]);
        assert_eq!(ls.winding_order(), Some(WindingOrder::CounterClockwise));

        ls.make_cw_winding();
        assert_eq!(ls.winding_order(), Some(WindingOrder::Clockwise));
    }

    #[test]
    fn robust_winding_integer() {
        // 3 points forming a triangle
        let a = Point::new(0i64, 0);
        let b = Point::new(2, 0);
        let c = Point::new(1, 2);

        // Verify open linestrings return None
        let mut ls = LineString::from(vec![a.0, b.0, c.0]);
        assert!(ls.winding_order().is_none());

        ls.0.push(ls.0[0]);
        assert!(ls.is_ccw());

        let ccw_ls: Vec<_> = ls.points_ccw().collect();

        ls.make_cw_winding();
        assert!(ls.is_cw());

        assert_eq!(&ls.points_ccw().collect::<Vec<_>>(), &ccw_ls,);
    }
}