1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
#[cfg(any(feature = "approx", test))]
use approx::{AbsDiffEq, RelativeEq};

use crate::{CoordNum, Coordinate, Line, Point, Triangle};
use std::iter::FromIterator;
use std::ops::{Index, IndexMut};

/// An ordered collection of two or more [`Coordinate`]s, representing a
/// path between locations.
///
/// # Semantics
///
/// A `LineString` is _closed_ if it is empty, or if the
/// first and last coordinates are the same. The _boundary_
/// of a `LineString` is empty if closed, and otherwise the
/// end points. The _interior_ is the (infinite) set of all
/// points along the linestring _not including_ the
/// boundary. A `LineString` is _simple_ if it does not
/// intersect except possibly at the first and last
/// coordinates. A simple and closed `LineString` is a
/// `LinearRing` as defined in the OGC-SFA (but is not a
/// separate type here).
///
/// # Validity
///
/// A `LineString` is valid if it is either empty or
/// contains 2 or more coordinates. Further, a closed
/// `LineString` must not self intersect. Note that the
/// validity is not enforced, and the operations and
/// predicates are undefined on invalid linestrings.
///
/// # Examples
///
/// Create a `LineString` by calling it directly:
///
/// ```
/// use geo_types::{Coordinate, LineString};
///
/// let line_string = LineString(vec![
///     Coordinate { x: 0., y: 0. },
///     Coordinate { x: 10., y: 0. },
/// ]);
/// ```
///
/// Create a `LineString` with the [`line_string!`] macro:
///
/// ```
/// use geo_types::line_string;
///
/// let line_string = line_string![
///     (x: 0., y: 0.),
///     (x: 10., y: 0.),
/// ];
/// ```
///
/// Converting a `Vec` of `Coordinate`-like things:
///
/// ```
/// use geo_types::LineString;
///
/// let line_string: LineString<f32> = vec![(0., 0.), (10., 0.)].into();
/// ```
///
/// ```
/// use geo_types::LineString;
///
/// let line_string: LineString<f64> = vec![[0., 0.], [10., 0.]].into();
/// ```
//
/// Or `collect`ing from a `Coordinate` iterator
///
/// ```
/// use geo_types::{Coordinate, LineString};
///
/// let mut coords_iter =
///     vec![Coordinate { x: 0., y: 0. }, Coordinate { x: 10., y: 0. }].into_iter();
///
/// let line_string: LineString<f32> = coords_iter.collect();
/// ```
///
/// You can iterate over the coordinates in the `LineString`:
///
/// ```
/// use geo_types::{Coordinate, LineString};
///
/// let line_string = LineString(vec![
///     Coordinate { x: 0., y: 0. },
///     Coordinate { x: 10., y: 0. },
/// ]);
///
/// for coord in line_string {
///     println!("Coordinate x = {}, y = {}", coord.x, coord.y);
/// }
/// ```
///
/// You can also iterate over the coordinates in the `LineString` as `Point`s:
///
/// ```
/// use geo_types::{Coordinate, LineString};
///
/// let line_string = LineString(vec![
///     Coordinate { x: 0., y: 0. },
///     Coordinate { x: 10., y: 0. },
/// ]);
///
/// for point in line_string.points_iter() {
///     println!("Point x = {}, y = {}", point.x(), point.y());
/// }
/// ```

#[derive(Eq, PartialEq, Clone, Debug, Hash)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct LineString<T>(pub Vec<Coordinate<T>>)
where
    T: CoordNum;

/// A `Point` iterator returned by the `points_iter` method
#[derive(Debug)]
pub struct PointsIter<'a, T: CoordNum + 'a>(::std::slice::Iter<'a, Coordinate<T>>);

impl<'a, T: CoordNum> Iterator for PointsIter<'a, T> {
    type Item = Point<T>;

    fn next(&mut self) -> Option<Self::Item> {
        self.0.next().map(|c| Point(*c))
    }
}

impl<'a, T: CoordNum> DoubleEndedIterator for PointsIter<'a, T> {
    fn next_back(&mut self) -> Option<Self::Item> {
        self.0.next_back().map(|c| Point(*c))
    }
}

impl<T: CoordNum> LineString<T> {
    /// Return an iterator yielding the coordinates of a `LineString` as `Point`s
    pub fn points_iter(&self) -> PointsIter<T> {
        PointsIter(self.0.iter())
    }

    /// Return the coordinates of a `LineString` as a `Vec` of `Point`s
    pub fn into_points(self) -> Vec<Point<T>> {
        self.0.into_iter().map(Point).collect()
    }

    /// Return an iterator yielding one `Line` for each line segment
    /// in the `LineString`.
    ///
    /// # Examples
    ///
    /// ```
    /// use geo_types::{Coordinate, Line, LineString};
    ///
    /// let mut coords = vec![(0., 0.), (5., 0.), (7., 9.)];
    /// let line_string: LineString<f32> = coords.into_iter().collect();
    ///
    /// let mut lines = line_string.lines();
    /// assert_eq!(
    ///     Some(Line::new(
    ///         Coordinate { x: 0., y: 0. },
    ///         Coordinate { x: 5., y: 0. }
    ///     )),
    ///     lines.next()
    /// );
    /// assert_eq!(
    ///     Some(Line::new(
    ///         Coordinate { x: 5., y: 0. },
    ///         Coordinate { x: 7., y: 9. }
    ///     )),
    ///     lines.next()
    /// );
    /// assert!(lines.next().is_none());
    /// ```
    pub fn lines<'a>(&'a self) -> impl ExactSizeIterator + Iterator<Item = Line<T>> + 'a {
        self.0.windows(2).map(|w| {
            // slice::windows(N) is guaranteed to yield a slice with exactly N elements
            unsafe { Line::new(*w.get_unchecked(0), *w.get_unchecked(1)) }
        })
    }

    /// An iterator which yields the coordinates of a `LineString` as `Triangle`s
    pub fn triangles<'a>(&'a self) -> impl ExactSizeIterator + Iterator<Item = Triangle<T>> + 'a {
        self.0.windows(3).map(|w| {
            // slice::windows(N) is guaranteed to yield a slice with exactly N elements
            unsafe {
                Triangle(
                    *w.get_unchecked(0),
                    *w.get_unchecked(1),
                    *w.get_unchecked(2),
                )
            }
        })
    }

    /// Close the `LineString`. Specifically, if the `LineString` has at least one coordinate, and
    /// the value of the first coordinate does not equal the value of the last coordinate, then a
    /// new coordinate is added to the end with the value of the first coordinate.
    pub fn close(&mut self) {
        if !self.is_closed() {
            // by definition, we treat empty LineString's as closed.
            debug_assert!(!self.0.is_empty());
            self.0.push(self.0[0]);
        }
    }

    /// Return the number of coordinates in the `LineString`.
    ///
    /// # Examples
    ///
    /// ```
    /// use geo_types::LineString;
    ///
    /// let mut coords = vec![(0., 0.), (5., 0.), (7., 9.)];
    /// let line_string: LineString<f32> = coords.into_iter().collect();
    /// assert_eq!(3, line_string.num_coords());
    /// ```
    #[deprecated(note = "Use geo::algorithm::coords_iter::CoordsIter::coords_count instead")]
    pub fn num_coords(&self) -> usize {
        self.0.len()
    }

    /// Checks if the linestring is closed; i.e. it is
    /// either empty or, the first and last points are the
    /// same.
    ///
    /// # Examples
    ///
    /// ```
    /// use geo_types::LineString;
    ///
    /// let mut coords = vec![(0., 0.), (5., 0.), (0., 0.)];
    /// let line_string: LineString<f32> = coords.into_iter().collect();
    /// assert!(line_string.is_closed());
    /// ```
    ///
    /// Note that we diverge from some libraries (JTS et al), which have a LinearRing type,
    /// separate from LineString. Those libraries treat an empty LinearRing as closed, by
    /// definition, while treating an empty LineString as open. Since we don't have a separate
    /// LinearRing type, and use a LineString in its place, we adopt the JTS LinearRing `is_closed`
    /// behavior in all places, that is, we consider an empty LineString as closed.
    ///
    /// This is expected when used in the context of a Polygon.exterior and elswhere; And there
    /// seems to be no reason to maintain the separate behavior for LineStrings used in
    /// non-LinearRing contexts.
    pub fn is_closed(&self) -> bool {
        self.0.first() == self.0.last()
    }
}

/// Turn a `Vec` of `Point`-like objects into a `LineString`.
impl<T: CoordNum, IC: Into<Coordinate<T>>> From<Vec<IC>> for LineString<T> {
    fn from(v: Vec<IC>) -> Self {
        LineString(v.into_iter().map(|c| c.into()).collect())
    }
}

/// Turn an iterator of `Point`-like objects into a `LineString`.
impl<T: CoordNum, IC: Into<Coordinate<T>>> FromIterator<IC> for LineString<T> {
    fn from_iter<I: IntoIterator<Item = IC>>(iter: I) -> Self {
        LineString(iter.into_iter().map(|c| c.into()).collect())
    }
}

/// Iterate over all the [Coordinate](struct.Coordinates.html)s in this `LineString`.
impl<T: CoordNum> IntoIterator for LineString<T> {
    type Item = Coordinate<T>;
    type IntoIter = ::std::vec::IntoIter<Coordinate<T>>;

    fn into_iter(self) -> Self::IntoIter {
        self.0.into_iter()
    }
}

/// Mutably iterate over all the [Coordinate](struct.Coordinates.html)s in this `LineString`.
impl<'a, T: CoordNum> IntoIterator for &'a mut LineString<T> {
    type Item = &'a mut Coordinate<T>;
    type IntoIter = ::std::slice::IterMut<'a, Coordinate<T>>;

    fn into_iter(self) -> ::std::slice::IterMut<'a, Coordinate<T>> {
        self.0.iter_mut()
    }
}

impl<T: CoordNum> Index<usize> for LineString<T> {
    type Output = Coordinate<T>;

    fn index(&self, index: usize) -> &Coordinate<T> {
        self.0.index(index)
    }
}

impl<T: CoordNum> IndexMut<usize> for LineString<T> {
    fn index_mut(&mut self, index: usize) -> &mut Coordinate<T> {
        self.0.index_mut(index)
    }
}

#[cfg(any(feature = "approx", test))]
impl<T> RelativeEq for LineString<T>
where
    T: AbsDiffEq<Epsilon = T> + CoordNum + RelativeEq,
{
    #[inline]
    fn default_max_relative() -> Self::Epsilon {
        T::default_max_relative()
    }

    /// Equality assertion within a relative limit.
    ///
    /// # Examples
    ///
    /// ```
    /// use geo_types::LineString;
    ///
    /// let mut coords_a = vec![(0., 0.), (5., 0.), (7., 9.)];
    /// let a: LineString<f32> = coords_a.into_iter().collect();
    ///
    /// let mut coords_b = vec![(0., 0.), (5., 0.), (7.001, 9.)];
    /// let b: LineString<f32> = coords_b.into_iter().collect();
    ///
    /// approx::assert_relative_eq!(a, b, max_relative=0.1)
    /// ```
    ///
    fn relative_eq(
        &self,
        other: &Self,
        epsilon: Self::Epsilon,
        max_relative: Self::Epsilon,
    ) -> bool {
        if self.0.len() != other.0.len() {
            return false;
        }

        let points_zipper = self.points_iter().zip(other.points_iter());
        for (lhs, rhs) in points_zipper {
            if lhs.relative_ne(&rhs, epsilon, max_relative) {
                return false;
            }
        }

        true
    }
}

#[cfg(any(feature = "approx", test))]
impl<T: AbsDiffEq<Epsilon = T> + CoordNum> AbsDiffEq for LineString<T> {
    type Epsilon = T;

    #[inline]
    fn default_epsilon() -> Self::Epsilon {
        T::default_epsilon()
    }

    /// Equality assertion with a absolute limit.
    ///
    /// # Examples
    ///
    /// ```
    /// use geo_types::LineString;
    ///
    /// let mut coords_a = vec![(0., 0.), (5., 0.), (7., 9.)];
    /// let a: LineString<f32> = coords_a.into_iter().collect();
    ///
    /// let mut coords_b = vec![(0., 0.), (5., 0.), (7.001, 9.)];
    /// let b: LineString<f32> = coords_b.into_iter().collect();
    ///
    /// approx::assert_relative_eq!(a, b, epsilon=0.1)
    /// ```
    fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
        if self.0.len() != other.0.len() {
            return false;
        }
        let mut points_zipper = self.points_iter().zip(other.points_iter());
        points_zipper.all(|(lhs, rhs)| lhs.abs_diff_eq(&rhs, epsilon))
    }
}

#[cfg(feature = "rstar")]
impl<T> ::rstar::RTreeObject for LineString<T>
where
    T: ::num_traits::Float + ::rstar::RTreeNum,
{
    type Envelope = ::rstar::AABB<Point<T>>;

    fn envelope(&self) -> Self::Envelope {
        use num_traits::Bounded;
        let bounding_rect = crate::private_utils::line_string_bounding_rect(self);
        match bounding_rect {
            None => ::rstar::AABB::from_corners(
                Point::new(Bounded::min_value(), Bounded::min_value()),
                Point::new(Bounded::max_value(), Bounded::max_value()),
            ),
            Some(b) => ::rstar::AABB::from_corners(
                Point::new(b.min().x, b.min().y),
                Point::new(b.max().x, b.max().y),
            ),
        }
    }
}

#[cfg(feature = "rstar")]
impl<T> ::rstar::PointDistance for LineString<T>
where
    T: ::num_traits::Float + ::rstar::RTreeNum,
{
    fn distance_2(&self, point: &Point<T>) -> T {
        let d = crate::private_utils::point_line_string_euclidean_distance(*point, self);
        if d == T::zero() {
            d
        } else {
            d.powi(2)
        }
    }
}

#[cfg(test)]
mod test {
    use super::*;

    use approx::AbsDiffEq;

    #[test]
    fn test_abs_diff_eq() {
        let delta = 1e-6;

        let coords = vec![(0., 0.), (5., 0.), (10., 10.)];
        let ls: LineString<f32> = coords.into_iter().collect();

        let coords_x = vec![(0., 0.), (5. + delta, 0.), (10., 10.)];
        let ls_x: LineString<f32> = coords_x.into_iter().collect();
        assert!(ls.abs_diff_eq(&ls_x, 1e-2));
        assert!(ls.abs_diff_ne(&ls_x, 1e-12));

        let coords_y = vec![(0., 0.), (5., 0. + delta), (10., 10.)];
        let ls_y: LineString<f32> = coords_y.into_iter().collect();
        assert!(ls.abs_diff_eq(&ls_y, 1e-2));
        assert!(ls.abs_diff_ne(&ls_y, 1e-12));

        // Undersized, but otherwise equal.
        let coords_x = vec![(0., 0.), (5., 0.)];
        let ls_under: LineString<f32> = coords_x.into_iter().collect();
        assert!(ls.abs_diff_ne(&ls_under, 1.));

        // Oversized, but otherwise equal.
        let coords_x = vec![(0., 0.), (5., 0.), (10., 10.), (10., 100.)];
        let ls_oversized: LineString<f32> = coords_x.into_iter().collect();
        assert!(ls.abs_diff_ne(&ls_oversized, 1.));
    }

    #[test]
    fn test_relative_eq() {
        let delta = 1e-6;

        let coords = vec![(0., 0.), (5., 0.), (10., 10.)];
        let ls: LineString<f32> = coords.into_iter().collect();

        let coords_x = vec![(0., 0.), (5. + delta, 0.), (10., 10.)];
        let ls_x: LineString<f32> = coords_x.into_iter().collect();
        assert!(ls.relative_eq(&ls_x, 1e-2, 1e-2));
        assert!(ls.relative_ne(&ls_x, 1e-12, 1e-12));

        let coords_y = vec![(0., 0.), (5., 0. + delta), (10., 10.)];
        let ls_y: LineString<f32> = coords_y.into_iter().collect();
        assert!(ls.relative_eq(&ls_y, 1e-2, 1e-2));
        assert!(ls.relative_ne(&ls_y, 1e-12, 1e-12));

        // Undersized, but otherwise equal.
        let coords_x = vec![(0., 0.), (5., 0.)];
        let ls_under: LineString<f32> = coords_x.into_iter().collect();
        assert!(ls.relative_ne(&ls_under, 1., 1.));

        // Oversized, but otherwise equal.
        let coords_x = vec![(0., 0.), (5., 0.), (10., 10.), (10., 100.)];
        let ls_oversized: LineString<f32> = coords_x.into_iter().collect();
        assert!(ls.relative_ne(&ls_oversized, 1., 1.));
    }
}