use super::Select;
use crate::chromosome::Chromosome;
use crate::fitness::FitnessOrdering;
use crate::fitness::FitnessValue;
use crate::genotype::EvolveGenotype;
use crate::strategy::evolve::{EvolveConfig, EvolveState};
use crate::strategy::{StrategyAction, StrategyReporter, StrategyState};
use rand::prelude::*;
use std::time::Instant;
#[derive(Clone, Debug)]
pub struct Tournament {
pub replacement_rate: f32,
pub elitism_rate: f32,
pub tournament_size: usize,
}
impl Select for Tournament {
fn call<G: EvolveGenotype, R: Rng, SR: StrategyReporter<Genotype = G>>(
&mut self,
genotype: &mut G,
state: &mut EvolveState<G>,
config: &EvolveConfig,
_reporter: &mut SR,
rng: &mut R,
) {
let now = Instant::now();
let mut elite_chromosomes =
self.extract_elite_chromosomes(state, config, self.elitism_rate);
let (mut offspring, mut parents): (Vec<G::Chromosome>, Vec<G::Chromosome>) = state
.population
.chromosomes
.drain(..)
.partition(|c| c.is_offspring());
let (new_parents_size, new_offspring_size) = self.parent_and_offspring_survival_sizes(
parents.len(),
offspring.len(),
config.target_population_size - elite_chromosomes.len(),
self.replacement_rate,
);
self.selection(&mut parents, new_parents_size, genotype, config, rng);
self.selection(&mut offspring, new_offspring_size, genotype, config, rng);
state.population.chromosomes.append(&mut elite_chromosomes);
state.population.chromosomes.append(&mut offspring);
state.population.chromosomes.append(&mut parents);
self.selection(
&mut state.population.chromosomes,
config.target_population_size,
genotype,
config,
rng,
);
state.add_duration(StrategyAction::Select, now.elapsed());
}
}
impl Tournament {
pub fn new(replacement_rate: f32, elitism_rate: f32, tournament_size: usize) -> Self {
Self {
replacement_rate,
elitism_rate,
tournament_size,
}
}
pub fn selection<G: EvolveGenotype, R: Rng>(
&self,
chromosomes: &mut Vec<G::Chromosome>,
selection_size: usize,
genotype: &mut G,
config: &EvolveConfig,
rng: &mut R,
) {
let mut working_population_size = chromosomes.len();
let tournament_size = std::cmp::min(self.tournament_size, working_population_size);
let selection_size = std::cmp::min(selection_size, working_population_size);
let mut selected_chromosomes: Vec<G::Chromosome> = Vec::with_capacity(selection_size);
let mut sample_index: usize;
let mut winning_index: usize;
let mut sample_fitness_value: FitnessValue;
let mut winning_fitness_value: FitnessValue;
match config.fitness_ordering {
FitnessOrdering::Maximize => {
for _ in 0..selection_size {
winning_index = 0;
winning_fitness_value = FitnessValue::MIN;
for _ in 0..tournament_size {
sample_index = rng.gen_range(0..working_population_size);
sample_fitness_value = chromosomes[sample_index]
.fitness_score()
.unwrap_or(FitnessValue::MIN);
if sample_fitness_value >= winning_fitness_value {
winning_index = sample_index;
winning_fitness_value = sample_fitness_value;
}
}
let chromosome = chromosomes.swap_remove(winning_index);
selected_chromosomes.push(chromosome);
working_population_size -= 1;
}
}
FitnessOrdering::Minimize => {
for _ in 0..selection_size {
winning_index = 0;
winning_fitness_value = FitnessValue::MAX;
for _ in 0..tournament_size {
sample_index = rng.gen_range(0..working_population_size);
sample_fitness_value = chromosomes[sample_index]
.fitness_score()
.unwrap_or(FitnessValue::MAX);
if sample_fitness_value <= winning_fitness_value {
winning_index = sample_index;
winning_fitness_value = sample_fitness_value;
}
}
let chromosome = chromosomes.swap_remove(winning_index);
selected_chromosomes.push(chromosome);
working_population_size -= 1;
}
}
};
genotype.chromosome_destructor_truncate(chromosomes, 0);
chromosomes.append(&mut selected_chromosomes);
}
}