1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
#![warn(missing_docs)]
#![allow(clippy::needless_doctest_main)]
//! A small crate to quickstart genetic algorithm projects
//!
//! ### How to Use
//! First off, this crate comes with the `builtin` and `genrand` features by default. If you want to add the builtin crossover reproduction extension, you can do so by adding the `crossover` feature.
//!
//! Once you have eveything imported as you wish, you can define your entity and impl the required traits:
//!
//! ```rust, ignore
//! #[derive(Clone, Debug)] // clone is currently a required derive for pruning nextgens.
//! struct MyEntity {
//! field1: f32,
//! }
//!
//! // required in all of the builtin functions as requirements of `DivisionReproduction` and `CrossoverReproduction`
//! impl RandomlyMutable for MyEntity {
//! fn mutate(&mut self, rate: f32, rng: &mut impl rand::Rng) {
//! self.field1 += rng.gen::<f32>() * rate;
//! }
//! }
//!
//! // required for `division_pruning_nextgen`.
//! impl DivisionReproduction for MyEntity {
//! fn spawn_child(&self, rng: &mut impl rand::Rng) -> Self {
//! let mut child = self.clone();
//! child.mutate(0.25, rng); // use a constant mutation rate when spawning children in pruning algorithms.
//! child
//! }
//! }
//!
//! // required for the builtin pruning algorithms.
//! impl Prunable for MyEntity {
//! fn despawn(self) {
//! // unneccessary to implement this function, but it can be useful for debugging and cleaning up entities.
//! println!("{:?} died", self);
//! }
//! }
//!
//! // helper trait that allows us to use `Vec::gen_random` for the initial population.
//! impl GenerateRandom for MyEntity {
//! fn gen_random(rng: &mut impl rand::Rng) -> Self {
//! Self { field1: rng.gen() }
//! }
//! }
//! ```
//!
//! Once you have a struct, you must create your fitness function:
//! ```rust, ignore
//! fn my_fitness_fn(ent: &MyEntity) -> f32 {
//! // this just means that the algorithm will try to create as big a number as possible due to fitness being directly taken from the field.
//! // in a more complex genetic algorithm, you will want to utilize `ent` to test them and generate a reward.
//! ent.field1
//! }
//! ```
//!
//!
//! Once you have your fitness function, you can create a `GeneticSim` object to manage and control the evolutionary steps:
//!
//! ```rust, ignore
//! fn main() {
//! let mut rng = rand::thread_rng();
//! let mut sim = GeneticSim::new(
//! // you must provide a random starting population.
//! // size will be preserved in builtin nextgen fns, but it is not required to keep a constant size if you were to build your own nextgen function.
//! // in this case, you do not need to specify a type for `Vec::gen_random` because of the input of `my_fitness_fn`.
//! Vec::gen_random(&mut rng, 100),
//! my_fitness_fn,
//! division
//! );
//!
//! // perform evolution (100 gens)
//! for _ in 0..100 {
//! sim.next_generation(); // in a genetic algorithm with state, such as a physics simulation, you'd want to do things with `sim.entities` in between these calls
//! }
//!
//! dbg!(sim.entities);
//! }
//! ```
//!
//! That is the minimal code for a working pruning-based genetic algorithm. You can [read the docs](https://docs.rs/genetic-rs) or [check the examples](/examples/) for more complicated systems.
//!
//! ### License
//! This project falls under the `MIT` license.
use replace_with::replace_with_or_abort;
/// Built-in nextgen functions and traits to go with them.
#[cfg(feature = "builtin")]
pub mod builtin;
/// Used to quickly import everything this crate has to offer.
/// Simply add `use genetic_rs::prelude::*` to begin using this crate.
pub mod prelude;
#[cfg(feature = "rayon")]
use rayon::prelude::*;
/// Represents a fitness function. Inputs a reference to the entity and outputs an f32.
pub type FitnessFn<E> = dyn Fn(&E) -> f32 + Send + Sync + 'static;
/// Represents a nextgen function. Inputs entities and rewards and produces the next generation
pub type NextgenFn<E> = dyn Fn(Vec<(E, f32)>) -> Vec<E> + Send + Sync + 'static;
/// The simulation controller.
/// ```rust
/// use genetic_rs::prelude::*;
///
/// #[derive(Debug, Clone)]
/// struct MyEntity {
/// a: f32,
/// b: f32,
/// }
///
/// impl RandomlyMutable for MyEntity {
/// fn mutate(&mut self, rate: f32, rng: &mut impl rand::Rng) {
/// self.a += rng.gen::<f32>() * rate;
/// self.b += rng.gen::<f32>() * rate;
/// }
/// }
///
/// impl DivisionReproduction for MyEntity {
/// fn spawn_child(&self, rng: &mut impl rand::Rng) -> Self {
/// let mut child = self.clone();
/// child.mutate(0.25, rng); // you'll generally want to use a constant mutation rate for mutating children.
/// child
/// }
/// }
///
/// impl Prunable for MyEntity {} // if we wanted to, we could implement the `despawn` function to run any cleanup code as needed. in this example, though, we do not need it.
///
/// impl GenerateRandom for MyEntity {
/// fn gen_random(rng: &mut impl rand::Rng) -> Self {
/// Self {
/// a: rng.gen(),
/// b: rng.gen(),
/// }
/// }
/// }
///
/// fn main() {
/// let my_fitness_fn = |e: &MyEntity| {
/// e.a * e.b // should result in entities increasing their value
/// };
///
/// let mut rng = rand::thread_rng();
///
/// let mut sim = GeneticSim::new(
/// Vec::gen_random(&mut rng, 1000),
/// my_fitness_fn,
/// division_pruning_nextgen,
/// );
///
/// for _ in 0..100 {
/// // if this were a more complex simulation, you might test entities in `sim.entities` between `next_generation` calls to provide a more accurate reward.
/// sim.next_generation();
/// }
///
/// dbg!(sim.entities);
/// }
/// ```
#[cfg(not(feature = "rayon"))]
pub struct GeneticSim<E>
where
E: Sized,
{
/// The current population of entities
pub entities: Vec<E>,
fitness: Box<FitnessFn<E>>,
next_gen: Box<NextgenFn<E>>,
}
/// Rayon version of the [GeneticSim] struct
#[cfg(feature = "rayon")]
pub struct GeneticSim<E>
where
E: Sized + Send,
{
/// The current population of entities
pub entities: Vec<E>,
fitness: Box<FitnessFn<E>>,
next_gen: Box<NextgenFn<E>>,
}
#[cfg(not(feature = "rayon"))]
impl<E> GeneticSim<E>
where
E: Sized,
{
/// Creates a GeneticSim with a given population of `starting_entities` (the size of which will be retained),
/// a given fitness function, and a given nextgen function.
pub fn new(
starting_entities: Vec<E>,
fitness: impl Fn(&E) -> f32 + Send + Sync + 'static,
next_gen: impl Fn(Vec<(E, f32)>) -> Vec<E> + Send + Sync + 'static,
) -> Self {
Self {
entities: starting_entities,
fitness: Box::new(fitness),
next_gen: Box::new(next_gen),
}
}
/// Uses the `next_gen` provided in [GeneticSim::new] to create the next generation of entities.
pub fn next_generation(&mut self) {
// TODO maybe remove unneccessary dependency, can prob use std::mem::replace
replace_with_or_abort(&mut self.entities, |entities| {
let rewards = entities
.into_iter()
.map(|e| {
let fitness: f32 = (self.fitness)(&e);
(e, fitness)
})
.collect();
(self.next_gen)(rewards)
});
}
}
#[cfg(feature = "rayon")]
impl<E> GeneticSim<E>
where
E: Sized + Send,
{
/// Creates a new GeneticSim using a starting population, fitness function, and nextgen function
pub fn new(
starting_entities: Vec<E>,
fitness: impl Fn(&E) -> f32 + Send + Sync + 'static,
next_gen: impl Fn(Vec<(E, f32)>) -> Vec<E> + Send + Sync + 'static,
) -> Self {
Self {
entities: starting_entities,
fitness: Box::new(fitness),
next_gen: Box::new(next_gen),
}
}
/// Performs selection and produces the next generation within the simulation.
pub fn next_generation(&mut self) {
replace_with_or_abort(&mut self.entities, |entities| {
let rewards = entities
.into_par_iter()
.map(|e| {
let fitness: f32 = (self.fitness)(&e);
(e, fitness)
})
.collect();
(self.next_gen)(rewards)
});
}
}
#[cfg(feature = "genrand")]
use rand::prelude::*;
/// Helper trait used in the generation of random starting populations
#[cfg(feature = "genrand")]
pub trait GenerateRandom {
/// Create a completely random instance of the entity
fn gen_random(rng: &mut impl Rng) -> Self;
}
/// Blanket trait used on collections that contain objects implementing GenerateRandom
#[cfg(all(feature = "genrand", not(feature = "rayon")))]
pub trait GenerateRandomCollection<T>
where
T: GenerateRandom,
{
/// Generate a random collection of the inner objects with a given amount
fn gen_random(rng: &mut impl Rng, amount: usize) -> Self;
}
/// Rayon version of the [GenerateRandomCollection] trait
#[cfg(all(feature = "genrand", feature = "rayon"))]
pub trait GenerateRandomCollection<T>
where
T: GenerateRandom + Send,
{
/// Generate a random collection of the inner objects with the given amount. Does not pass in rng like the sync counterpart.
fn gen_random(amount: usize) -> Self;
}
#[cfg(not(feature = "rayon"))]
impl<C, T> GenerateRandomCollection<T> for C
where
C: FromIterator<T>,
T: GenerateRandom,
{
fn gen_random(rng: &mut impl Rng, amount: usize) -> Self {
(0..amount)
.into_iter()
.map(|_| T::gen_random(rng))
.collect()
}
}
#[cfg(feature = "rayon")]
impl<C, T> GenerateRandomCollection<T> for C
where
C: FromParallelIterator<T>,
T: GenerateRandom + Send,
{
fn gen_random(amount: usize) -> Self {
(0..amount)
.into_par_iter()
.map(|_| T::gen_random(&mut rand::thread_rng()))
.collect()
}
}
#[cfg(test)]
mod tests {
use super::prelude::*;
#[test]
fn send_sim() {
let mut sim = GeneticSim::new(vec![()], |_| 0., |_| vec![()]);
let h = std::thread::spawn(move || {
sim.next_generation();
});
h.join().unwrap();
}
}