generic-vec 0.1.2

a vector implementation that can be used in `no_std` envioronments
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
#![cfg_attr(not(any(doc, feature = "std")), no_std)]
#![cfg_attr(
    any(doc, feature = "nightly"),
    feature(min_const_generics, unsafe_block_in_unsafe_fn)
)]
#![cfg_attr(
    any(doc, feature = "nightly"),
    feature(
        trusted_len,
        min_specialization,
        exact_size_is_empty,
        allocator_api,
        alloc_layout_extra,
        const_panic,
        const_fn,
        const_mut_refs,
        const_raw_ptr_deref,
        doc_cfg,
    )
)]
#![cfg_attr(feature = "nightly", forbid(unsafe_op_in_unsafe_fn))]
#![allow(unused_unsafe)]
#![forbid(missing_docs, clippy::missing_safety_doc)]

//! A vector that can store items anywhere: in slices, arrays, or the heap!
//!
//! [`GenericVec`] has complete parity with [`Vec`], and even provides some features
//! that are only in `nightly` on `std` (like [`GenericVec::drain_filter`]), or a more permissive
//! interface like [`GenericVec::retain`]. In fact, you can trivially convert a [`Vec`] to a
//! [`HeapVec`] and back!
//!
//! This crate is `no_std` compatible, just turn off all default features.
//!
//! # Features
//!
//! * `std` (default) - enables you to use an allocator, and
//! * `alloc` - enables you to use an allocator, for heap allocated storages
//!     (like [`Vec`])
//! * `nightly` - enables you to use array (`[T; N]`) based storages
//!
//! # Basic Usage
//!
//! ### [`SliceVec`] and [`InitSliceVec`]
//!
//! [`SliceVec`] and [`InitSliceVec`] are pretty similar, you give them a slice
//! buffer, and they store all of thier values in that buffer. But have three major
//! differences between them.
//!
//! * You can pass an uninitialized buffer to [`SliceVec`]
//! * You can only use [`Copy`] types with [`InitSliceVec`]
//! * You can freely set the length of the [`InitSliceVec`] as long as you stay
//!     within it's capacity (the length of the slice you pass in)
//!
//! ```rust
//! use generic_vec::{SliceVec, InitSliceVec, uninit_array};
//!
//! let mut uninit_buffer = uninit_array!(16);
//! let mut slice_vec = SliceVec::new(&mut uninit_buffer);
//!
//! assert!(slice_vec.is_empty());
//! slice_vec.push(10);
//! assert_eq!(slice_vec, [10]);
//! ```
//!
//! ```rust
//! # use generic_vec::InitSliceVec;
//! let mut init_buffer = [0xae; 16];
//! let mut slice_vec = InitSliceVec::new(&mut init_buffer);
//!
//! assert!(slice_vec.is_full());
//! assert_eq!(slice_vec.pop(), 0xae);
//! slice_vec.set_len(16);
//! assert!(slice_vec.is_full());
//! ```
//!
//! Of course if you try to push past a `*SliceVec`'s capacity
//! (the length of the slice you passed in), then it will panic.
//!
//! ```rust,should_panic
//! # use generic_vec::InitSliceVec;
//! let mut init_buffer = [0xae; 16];
//! let mut slice_vec = InitSliceVec::new(&mut init_buffer);
//! slice_vec.push(0);
//! ```
//!
//! ### [`TypeVec`]
//!
//! [`TypeVec`] is an owned buffer. You can use like so:
//!
//! ```rust
//! use generic_vec::{TypeVec, gvec};
//! let mut vec: TypeVec<u32, [u32; 4]> = gvec![1, 2, 3, 4];
//!
//! assert_eq!(vec, [1, 2, 3, 4]);
//!
//! vec.try_push(5).expect_err("Tried to push past capacity!");
//! ```
//!
//! The second parameter specifies the buffer type, this can be any type
//! you want. Only the size of the type matters. There is also a defaulted
//! third parameter, but you should only use that if you know what you are
//! doing, and after reading the docs for [`UninitBuffer`](raw::UninitBuffer).
//!
//! As a neat side-effect of this framework, you can also get an efficient
//! [`GenericVec`] for zero-sized types, just a `usize` in size! This feature
//! can be on stable `no_std`.
//!
//! ### [`ArrayVec`](type@ArrayVec) and [`InitArrayVec`](type@InitArrayVec)
//!
//! [`ArrayVec`](type@ArrayVec) and [`InitArrayVec`](type@InitArrayVec)
//! are just like the slice versions, but since they own their data,
//! they can be freely moved around, unconstrained. You can also create
//! a new [`ArrayVec`](type@ArrayVec) without passing in an existing buffer,
//! unlike the slice versions.
//!
//! On stable, you can use the [`ArrayVec`](macro@ArrayVec) or
//! [`InitArrayVec`](macro@InitArrayVec) to construct the type. On `nightly`,
//! you can use the type aliases [`ArrayVec`](type@ArrayVec) and
//! [`InitArrayVec`](type@InitArrayVec). The macros will be deprecated once
//! `min_const_generics` hits stable.
//!
//! The only limitation on stable is that you can only use [`InitArrayVec`](type@InitArrayVec)
//! capacity up to 32. i.e. `InitArrayVec![i32; 33]` doesn't work. `ArrayVec` does not suffer
//! from this limitation because it is built atop [`TypeVec`].
//!
//! ```rust
//! use generic_vec::ArrayVec;
//!
//! let mut array_vec = ArrayVec::<i32, 16>::new();
//!
//! array_vec.push(10);
//! array_vec.push(20);
//! array_vec.push(30);
//!
//! assert_eq!(array_vec, [10, 20, 30]);
//! ```
//!
//! The distinction between [`ArrayVec`](type@ArrayVec) and [`InitArrayVec`](type@InitArrayVec)
//! is identical to their slice counterparts.
//!
//! ### [`ZSVec`]
//!
//! ```rust
//! use generic_vec::ZSVec;
//!
//! struct MyType;
//!
//! let mut vec = ZSVec::new();
//!
//! vec.push(MyType);
//! vec.push(MyType);
//! vec.push(MyType);
//!
//! assert_eq!(vec.len(), 3);
//! assert_eq!(std::mem::size_of_val(&vec), std::mem::size_of::<usize>());
//! ```
//!
//! ## `alloc`
//!
//! A [`HeapVec`] is just [`Vec`], but built atop [`GenericVec`],
//! meaning you get all the features of [`GenericVec`] for free! But this
//! requries either the `alloc` or `std` feature to be enabled.
//!
//! ```rust
//! use generic_vec::{HeapVec, gvec};
//! let mut vec: HeapVec<u32> = gvec![1, 2, 3, 4];
//! assert_eq!(vec.capacity(), 4);
//! vec.extend(&[5, 6, 7, 8]);
//!
//! assert_eq!(vec, [1, 2, 3, 4, 5, 6, 7, 8]);
//!
//! vec.try_push(5).expect_err("Tried to push past capacity!");
//! ```
//!
//! ## `nightly`
//!
//! On `nightly`
//! * the restriction on [`InitArrayVec`](type@InitArrayVec)'s length goes away.
//! * many functions/methods become `const fn`s
//! * a number of optimizations are enabled
//! * some diagnostics become better
//!
//! Note on the documentation: if the feature exists on [`Vec`], then the documentation
//! is either exactly the same as [`Vec`] or slightly adapted to better fit [`GenericVec`]
//!
//! Note on implementation: large parts of the implementation came straight from [`Vec`]
//! so thanks for the amazing reference `std`!

#[cfg(all(feature = "alloc", not(feature = "std")))]
extern crate alloc as std;

use core::{
    marker::PhantomData,
    mem::MaybeUninit,
    ops::{Deref, DerefMut, RangeBounds},
    ptr,
};

mod extension;
mod impls;
mod slice;

pub mod iter;
pub mod raw;

use raw::Storage;

#[doc(hidden)]
pub use core;

/// A heap backed vector with a growable capacity
#[cfg(any(doc, all(feature = "alloc", feature = "nightly")))]
#[cfg_attr(doc, doc(cfg(all(feature = "alloc", feature = "nightly"))))]
pub type HeapVec<T, A = std::alloc::Global> = GenericVec<T, raw::Heap<T, A>>;

/// A heap backed vector with a growable capacity
#[cfg(all(not(doc), feature = "alloc", not(feature = "nightly")))]
#[cfg_attr(doc, doc(cfg(feature = "alloc")))]
pub type HeapVec<T> = GenericVec<T, raw::Heap<T>>;

/// An array backed vector backed by potentially uninitialized memory
#[cfg(any(doc, feature = "nightly"))]
#[cfg_attr(doc, doc(cfg(feature = "nightly")))]
pub type ArrayVec<T, const N: usize> = TypeVec<T, [T; N]>;
/// An slice backed vector backed by potentially uninitialized memory
pub type SliceVec<'a, T> = GenericVec<T, &'a mut raw::UninitSlice<T>>;

/// An array backed vector backed by initialized memory
#[cfg(any(doc, feature = "nightly"))]
#[cfg_attr(doc, doc(cfg(feature = "nightly")))]
pub type InitArrayVec<T, const N: usize> = GenericVec<T, [T; N]>;
/// An slice backed vector backed by initialized memory
pub type InitSliceVec<'a, T> = GenericVec<T, &'a mut [T]>;
/// A counter vector that can only store zero-sized types
pub type ZSVec<T> = GenericVec<T, raw::ZeroSized<T>>;
/// An type based vector backed by uninitialized memory with the same layout as `B`
///
/// see: [`UninitBuffer`](raw::UninitBuffer) for details
pub type TypeVec<T, B, A = T> = GenericVec<T, raw::UninitBuffer<B, A>>;

#[doc(hidden)]
pub mod macros {
    pub use core::mem::MaybeUninit;
    impl<T> Uninit for T {}
    pub trait Uninit: Sized {
        const UNINIT: MaybeUninit<Self> = MaybeUninit::uninit();
    }
}

/// Create a new generic vector
///
/// Because this can create any generic vector, you will likely
/// need to add some type annotations when you use it,
///
/// ```rust
/// # use generic_vec::{gvec, ArrayVec};
/// let x: ArrayVec<i32, 2> = gvec![0, 1];
/// assert_eq!(x, [0, 1]);
/// ```
#[macro_export]
#[cfg(feature = "nightly")]
macro_rules! gvec {
    ($expr:expr; $n:expr) => {{
        let len = $n;
        let mut vec = $crate::GenericVec::with_capacity(len);
        vec.grow(len, $expr);
        vec
    }};
    ($($expr:expr),*) => {{
        let expr = [$($expr),*];
        let mut vec = $crate::GenericVec::with_capacity(expr.len());
        unsafe { vec.push_array_unchecked(expr); }
        vec
    }};
}

#[doc(hidden)]
#[macro_export]
macro_rules! count {
    () => { 0 };
    ($($a:tt $b:tt)*) => { $crate::count!($($a)*) << 1 };
    ($c:tt $($a:tt $b:tt)*) => { ($crate::count!($($a)*) << 1) | 1 };
}

/// Create a new generic vector
///
/// Because this can create any generic vector, you will likely
/// need to add some type annotations when you use it,
///
/// ```rust
/// # use generic_vec::{gvec, TypeVec};
/// let x: TypeVec<i32, [i32; 4]> = gvec![1, 2, 3, 4];
/// assert_eq!(x, [1, 2, 3, 4]);
/// ```
#[macro_export]
#[cfg(not(feature = "nightly"))]
macro_rules! gvec {
    ($expr:expr; $n:expr) => {{
        let len = $n;
        let mut vec = $crate::GenericVec::with_capacity(len);
        vec.grow(len, $expr);
        vec
    }};
    ($($expr:expr),*) => {{
        let mut vec = $crate::GenericVec::with_capacity($crate::count!($(($expr))*));
        unsafe {
            $(vec.push_unchecked($expr);)*
        }
        vec
    }};
}

/// a helper macro to safely create an array of uninitialized memory of any size
///
///  use the const prefix if you need to initialize a `const` or `static`,
/// otherwise don't use the const modifier
#[macro_export]
macro_rules! uninit_array {
    (const $n:expr) => {
        [$crate::macros::Uninit::UNINIT; $n]
    };

    ($n:expr) => {
        // Safety
        //
        // `MaybeUninit` can represent any bit-pattern, including uninitialized memory
        // so it's fine to cast uninitialized memory to `[MaybeUninit; N]`
        unsafe { $crate::macros::MaybeUninit::<[$crate::macros::MaybeUninit<_>; $n]>::uninit().assume_init() }
    };
}

/// Save the changes to [`GenericVec::spare_capacity_mut`]
///
/// $orig - a mutable reference to a [`GenericVec`]
/// $spare - the [`SliceVec`] that was obtained from [`$orig.spare_capacity_mut()`]
///
/// # Safety
///
/// `$spare` should be the [`SliceVec`] returned by `$orig.spare_capacity_mut()`
#[macro_export]
macro_rules! save_spare {
    ($spare:expr, $orig:expr) => {{
        let spare: $crate::SliceVec<_> = $spare;
        let spare = $crate::core::mem::ManuallyDrop::new(spare);
        let len = spare.len();
        let ptr = spare.as_ptr();
        let orig: &mut $crate::GenericVec<_, _> = $orig;
        $crate::validate_spare(ptr, orig);
        let len = len + orig.len();
        $orig.set_len_unchecked(len);
    }};
}

#[doc(hidden)]
pub fn validate_spare<T>(spare_ptr: *const T, orig: &[T]) {
    debug_assert!(
        unsafe { orig.as_ptr().add(orig.len()) == spare_ptr },
        "Tried to use `save_spare!` with a `SliceVec` that was not obtained from `GenricVec::spare_capacity_mut`. \
         This is undefined behavior on release mode!"
    )
}

/// An array backed vector backed by potentially uninitialized memory
///
/// On `nightly`, it's prefered to use the [`ArrayVec`](type@ArrayVec) type alias
#[macro_export]
macro_rules! ArrayVec {
    ($type:ty; $len:expr) => {
        $crate::GenericVec<$type, $crate::raw::UninitBuffer<[$type; $len]>>
    };
}

/// An array backed vector backed by initialized memory
///
/// On `nightly`, it's prefered to use the [`InitArrayVec`](type@InitArrayVec) type alias
#[macro_export]
macro_rules! InitArrayVec {
    ($type:ty; $len:expr) => {
        $crate::GenericVec<$type, [$type; $len]>
    };
}

/// A vector type that can be backed up by a variety of different backends
/// including slices, arrays, and the heap.
#[repr(C)]
pub struct GenericVec<T, S: ?Sized + Storage<T>> {
    mark: PhantomData<T>,
    len: usize,
    storage: S,
}

impl<T, S: ?Sized + Storage<T>> Deref for GenericVec<T, S> {
    type Target = [T];

    fn deref(&self) -> &Self::Target {
        let len = self.len();
        // The first `len` elements are guaranteed to be initialized
        // as part of the guarantee on `self.set_len_unchecked`
        unsafe { core::slice::from_raw_parts(self.as_ptr(), len) }
    }
}

impl<T, S: ?Sized + Storage<T>> DerefMut for GenericVec<T, S> {
    fn deref_mut(&mut self) -> &mut Self::Target {
        let len = self.len();
        // The first `len` elements are guaranteed to be initialized
        // as part of the guarantee on `self.set_len_unchecked`
        unsafe { core::slice::from_raw_parts_mut(self.as_mut_ptr(), len) }
    }
}

impl<T, S: ?Sized + Storage<T>> Drop for GenericVec<T, S> {
    fn drop(&mut self) {
        // The first `len` elements are guaranteed to be initialized
        // as part of the guarantee on `self.set_len_unchecked`
        // These elements should be dropped when the `GenericVec` gets dropped/
        // The storage will clean it's self up on drop
        unsafe { ptr::drop_in_place(self.as_mut_slice()) }
    }
}

#[cfg(not(feature = "nightly"))]
impl<T, S: Storage<T>> GenericVec<T, S> {
    /// Create a new empty `GenericVec` with the given backend
    ///
    /// ```rust
    /// use generic_vec::{GenericVec, raw::ZeroSized};
    /// let vec = GenericVec::with_storage(ZeroSized::<[i32; 0]>::NEW);
    /// ```
    pub fn with_storage(storage: S) -> Self {
        assert!(S::IS_ALIGNED, "The storage must be aligned to `T`");
        Self {
            storage,
            len: 0,
            mark: PhantomData,
        }
    }
}

#[cfg(feature = "nightly")]
impl<T, S: Storage<T>> GenericVec<T, S> {
    /// Create a new empty `GenericVec` with the given backend
    ///
    /// Note: this is only const with the `nightly` feature enabled
    pub const fn with_storage(storage: S) -> Self {
        assert!(S::IS_ALIGNED, "The storage must be aligned to `T`");
        Self {
            storage,
            len: 0,
            mark: PhantomData,
        }
    }
}

impl<T, S: raw::StorageWithCapacity<T>> GenericVec<T, S> {
    /// Create a new empty `GenericVec` with the backend with at least the given capacity
    pub fn with_capacity(capacity: usize) -> Self { Self::with_storage(S::with_capacity(capacity)) }

    #[inline]
    #[allow(non_snake_case)]
    fn __with_capacity__const_capacity_checked(capacity: usize, old_capacity: Option<usize>) -> Self {
        Self::with_storage(S::__with_capacity__const_capacity_checked(capacity, old_capacity))
    }
}

impl<T, B> TypeVec<T, B, T> {
    /// Create a new [`TypeVec`]
    pub const fn new() -> Self { Self::with_align() }
}

impl<T, B, A> TypeVec<T, B, A> {
    /// Create a new [`TypeVec`] with the given alignment type
    pub const fn with_align() -> Self {
        #[cfg(not(feature = "nightly"))]
        #[allow(clippy::no_effect)]
        {
            [()][(!<raw::UninitBuffer<B, A> as raw::Storage<T>>::IS_ALIGNED) as usize];
        }
        #[cfg(feature = "nightly")]
        {
            assert!(
                <raw::UninitBuffer<B, A> as raw::Storage<T>>::IS_ALIGNED,
                "Your buffer is not sufficiently aligned"
            )
        }

        Self {
            len: 0,
            storage: raw::UninitBuffer::uninit(),
            mark: PhantomData,
        }
    }
}

#[cfg(any(doc, feature = "nightly"))]
#[cfg_attr(doc, doc(cfg(feature = "nightly")))]
impl<T, const N: usize> ArrayVec<T, N> {
    /// Create a new full `ArrayVec`
    pub const fn from_array(array: [T; N]) -> Self {
        Self {
            len: 0,
            mark: PhantomData,
            storage: raw::UninitBuffer::new(array),
        }
    }

    /// Convert this `ArrayVec` into an array
    ///
    /// # Panic
    ///
    /// Panics if the the collection is not full
    pub fn into_array(self) -> [T; N] {
        assert!(self.is_full());
        let this = core::mem::ManuallyDrop::new(self);
        unsafe { Storage::<[T; N]>::as_ptr(&this.storage).read() }
    }
}

#[cfg(feature = "nightly")]
#[cfg_attr(doc, doc(cfg(feature = "nightly")))]
impl<T: Copy, const N: usize> InitArrayVec<T, N> {
    /// Create a new full `InitArrayVec`
    pub fn new(storage: [T; N]) -> Self {
        Self {
            len: N,
            mark: PhantomData,
            storage,
        }
    }
}

#[cfg(feature = "alloc")]
#[cfg_attr(doc, doc(cfg(feature = "alloc")))]
impl<T> HeapVec<T> {
    /// Create a new empty `HeapVec`
    pub const fn new() -> Self {
        Self {
            len: 0,
            mark: PhantomData,
            storage: raw::Heap::new(),
        }
    }
}

#[cfg(any(doc, all(feature = "nightly", feature = "alloc")))]
#[cfg_attr(doc, doc(cfg(all(feature = "nightly", feature = "alloc"))))]
impl<T, A: std::alloc::AllocRef> HeapVec<T, A> {
    /// Create a new empty `HeapVec` with the given allocator
    pub fn with_alloc(alloc: A) -> Self { Self::with_storage(raw::Heap::with_alloc(alloc)) }
}

#[cfg(any(doc, not(feature = "nightly")))]
impl<'a, T> SliceVec<'a, T> {
    /// Create a new empty `SliceVec`
    pub fn new(slice: &'a mut [MaybeUninit<T>]) -> Self { Self::with_storage(raw::UninitSlice::from_mut(slice)) }
}

#[cfg(any(doc, feature = "nightly"))]
impl<'a, T> SliceVec<'a, T> {
    /// Create a new empty `SliceVec`
    ///
    /// Note: this is only const with the `nightly` feature enabled
    pub const fn new(slice: &'a mut [MaybeUninit<T>]) -> Self { Self::with_storage(raw::UninitSlice::from_mut(slice)) }
}

#[cfg(any(doc, not(feature = "nightly")))]
impl<'a, T: Copy> InitSliceVec<'a, T> {
    /// Create a new full `InitSliceVec`
    pub fn new(storage: &'a mut [T]) -> Self {
        Self {
            len: storage.len(),
            storage,
            mark: PhantomData,
        }
    }
}

#[cfg(feature = "nightly")]
impl<'a, T: Copy> InitSliceVec<'a, T> {
    /// Create a new full `InitSliceVec`
    ///
    /// Note: this is only const with the `nightly` feature enabled
    pub const fn new(storage: &'a mut [T]) -> Self {
        Self {
            len: storage.len(),
            storage,
            mark: PhantomData,
        }
    }
}

impl<T, S: Storage<T>> GenericVec<T, S> {
    /// Convert a `GenericVec` into a length-storage pair
    pub fn into_raw_parts(self) -> (usize, S) {
        let this = core::mem::ManuallyDrop::new(self);
        unsafe { (this.len, core::ptr::read(&this.storage)) }
    }

    /// Create a `GenericVec` from a length-storage pair
    ///
    /// # Safety
    ///
    /// the length must be less than `raw.capacity()` and
    /// all elements in the range `0..length`, must be initialized
    ///
    /// # Panic
    ///
    /// If the given storage cannot hold type `T`, then this method will panic
    #[cfg(not(feature = "nightly"))]
    pub unsafe fn from_raw_parts(len: usize, storage: S) -> Self {
        Self {
            storage,
            len,
            mark: PhantomData,
        }
    }
}

#[cfg(feature = "nightly")]
impl<T, S: Storage<T>> GenericVec<T, S> {
    /// Create a `GenericVec` from a length-storage pair
    ///
    /// Note: this is only const with the `nightly` feature enabled
    ///
    /// # Safety
    ///
    /// the length must be less than `raw.capacity()` and
    /// all elements in the range `0..length`, must be initialized
    ///
    /// # Panic
    ///
    /// If the given storage cannot hold type `T`, then this method will panic
    pub const unsafe fn from_raw_parts(len: usize, storage: S) -> Self {
        Self {
            storage,
            len,
            mark: PhantomData,
        }
    }
}

impl<T> ZSVec<T> {
    /// Create a new counter vector
    pub const NEW: Self = Self {
        len: 0,
        storage: raw::ZeroSized::NEW,
        mark: PhantomData,
    };

    /// Create a new counter vector
    pub const fn new() -> Self { Self::NEW }
}

impl<T, S: ?Sized + Storage<T>> GenericVec<T, S> {
    /// Returns a shared raw pointer to the vector's buffer.
    ///
    /// It's not safe to write to this pointer except for values
    /// inside of an `UnsafeCell`
    pub fn as_ptr(&self) -> *const T { self.storage.as_ptr() }

    /// Returns a unique raw pointer to the vector's buffer.
    pub fn as_mut_ptr(&mut self) -> *mut T { self.storage.as_mut_ptr() }

    /// Returns the number of elements in the vector
    pub fn len(&self) -> usize { self.len }

    /// Returns the number of elements the vector can hold without reallocating or panicing.
    pub fn capacity(&self) -> usize {
        if core::mem::size_of::<T>() == 0 {
            isize::MAX as usize
        } else {
            self.storage.capacity()
        }
    }

    /// Returns true if and only if the vector contains no elements.
    pub fn is_empty(&self) -> bool { self.len() == 0 }

    /// Returns true if and only if the vector's length is equal to it's capacity.
    pub fn is_full(&self) -> bool { self.len() == self.capacity() }

    /// Returns the length of the spare capacity of the `GenericVec`
    pub fn remaining_capacity(&self) -> usize { self.capacity().wrapping_sub(self.len()) }

    /// Set the length of a vector
    ///
    /// # Safety
    ///
    /// * new_len must be less than or equal to `capacity()`.
    /// * The elements at `old_len..new_len` must be initialized.
    pub unsafe fn set_len_unchecked(&mut self, len: usize) { self.len = len; }

    /// Set the length of a vector
    pub fn set_len(&mut self, len: usize)
    where
        S: raw::StorageInit<T>,
    {
        // Safety
        //
        // The storage only contains initialized data, and we check that
        // the given length is smaller than the capacity
        unsafe {
            assert!(
                len <= self.capacity(),
                "Tried to set the length to larger than the capacity"
            );
            self.set_len_unchecked(len);
        }
    }

    /// Extracts a slice containing the entire vector.
    ///
    /// Equivalent to &s[..].
    pub fn as_slice(&self) -> &[T] { self }

    /// Extracts a mutable slice containing the entire vector.
    ///
    /// Equivalent to &mut s[..].
    pub fn as_mut_slice(&mut self) -> &mut [T] { self }

    /// Returns the underlying storage
    pub fn storage(&self) -> &S { &self.storage }

    /// Returns the underlying storage
    ///
    /// # Safety
    ///
    /// You must not replace the storage
    pub unsafe fn storage_mut(&mut self) -> &mut S { &mut self.storage }

    /// Returns the remaining spare capacity of the vector as
    /// a [`SliceVec<'_, T>`](SliceVec).
    ///
    /// Keep in mind that the [`SliceVec<'_, T>`](SliceVec) will drop all elements
    /// that you push into it when it goes out of scope! If you want
    /// these modifications to persist then you should use [`save_spare`]
    /// to persist these writes.
    ///
    /// ```
    /// let mut vec = generic_vec::TypeVec::<i32, [i32; 16]>::new();
    ///
    /// let mut spare = vec.spare_capacity_mut();
    /// spare.push(0);
    /// spare.push(2);
    /// drop(spare);
    /// assert_eq!(vec, []);
    ///
    /// let mut spare = vec.spare_capacity_mut();
    /// spare.push(0);
    /// spare.push(2);
    /// unsafe { generic_vec::save_spare!(spare, &mut vec) }
    /// assert_eq!(vec, [0, 2]);
    /// ```
    pub fn spare_capacity_mut(&mut self) -> SliceVec<'_, T> {
        // Safety
        //
        // The elements from `len..capacity` are guaranteed to be contain
        // `A::BufferItem`s, as per `Storage`'s safety requirements
        unsafe {
            let len = self.len();
            let cap = self.capacity();
            SliceVec::new(core::slice::from_raw_parts_mut(
                self.storage.as_mut_ptr().add(len).cast(),
                cap.wrapping_sub(len),
            ))
        }
    }

    /// Reserve enough space for at least `additional` elements
    ///
    /// # Panics
    ///
    /// May panic or abort if it isn't possible to allocate enough space for
    /// `additional` more elements
    #[inline]
    pub fn reserve(&mut self, additional: usize) {
        #[cold]
        #[inline(never)]
        fn allocation_failure(additional: usize) -> ! {
            panic!("Tried to allocate: {} more space and failed", additional)
        }

        if self.remaining_capacity() < additional {
            self.storage.reserve(match self.len().checked_add(additional) {
                Some(new_capacity) => new_capacity,
                None => allocation_failure(additional),
            })
        }
    }

    /// Try to reserve enough space for at least `additional` elements, and returns `Err(_)`
    /// if it's not possible to reserve enough space
    #[inline]
    pub fn try_reserve(&mut self, additional: usize) -> bool {
        if self.remaining_capacity() < additional {
            match self.len().checked_add(additional) {
                Some(new_capacity) => self.storage.try_reserve(new_capacity),
                None => false,
            }
        } else {
            true
        }
    }

    /// Shortens the vector, keeping the first len elements and dropping the rest.
    ///
    /// If len is greater than the vector's current length, this has no effect.
    ///
    /// Note that this method has no effect on the allocated capacity of the vector.
    pub fn truncate(&mut self, len: usize) {
        if let Some(diff) = self.len().checked_sub(len) {
            // # Safety
            //
            // * the given length is smaller than the current length, so
            //   all the elements must be initialized
            // * the elements from `len..self.len()` are valid,
            //   and should be dropped
            unsafe {
                self.set_len_unchecked(len);
                let ptr = self.as_mut_ptr().add(len);
                let len = diff;
                core::ptr::drop_in_place(core::slice::from_raw_parts_mut(ptr, len));
            }
        }
    }

    /// Grows the `GenericVec` in-place by additional elements.
    ///
    /// This method requires `T` to implement `Clone`, in order to be able to clone
    /// the passed value. If you need more flexibility (or want to rely on Default instead of `Clone`),
    /// use [`GenericVec::grow_with`].
    ///
    /// # Panic
    ///
    /// May panic or reallocate if the collection is full
    ///
    /// # Panic behavor
    ///
    /// If `T::clone` panics, then all added items will be dropped. This is different
    /// from `std`, where on panic, items will stay in the `Vec`. This behavior
    /// is unstable, and may change in the future.
    pub fn grow(&mut self, additional: usize, value: T)
    where
        T: Clone,
    {
        self.reserve(additional);
        // # Safety
        //
        // * we reserved enough space
        unsafe { extension::Extension::grow(self, additional, value) }
    }

    /// Grows the `GenericVec` in-place by additional elements.
    ///
    /// This method uses a closure to create new values on every push.
    /// If you'd rather `Clone` a given value, use `GenericVec::resize`.
    /// If you want to use the `Default` trait to generate values, you
    /// can pass `Default::default` as the second argument.
    ///
    /// # Panic
    ///
    /// May panic or reallocate if the collection is full
    ///
    /// # Panic behavor
    ///
    /// If `F` panics, then all added items will be dropped. This is different
    /// from `std`, where on panic, items will stay in the `Vec`. This behavior
    /// is unstable, and may change in the future.
    pub fn grow_with<F>(&mut self, additional: usize, mut value: F)
    where
        F: FnMut() -> T,
    {
        // Safety
        //
        // * we reserve enough space for `additional` elements
        // * we use `spare_capacity_mut` to ensure that the items are dropped,
        //   even on panic
        // * the `ptr` always stays in bounds

        self.reserve(additional);
        let mut writer = self.spare_capacity_mut();

        for _ in 0..additional {
            unsafe {
                writer.push_unchecked(value());
            }
        }

        unsafe {
            save_spare!(writer, self);
        }
    }

    /// Resizes the [`GenericVec`] in-place so that `len` is equal to `new_len`.
    ///
    /// If `new_len` is greater than `len`, the [`GenericVec`] is extended by the difference,
    /// with each additional slot filled with value. If `new_len` is less than `len`,
    /// the [`GenericVec`] is simply truncated.
    ///
    /// If you know that `new_len` is larger than `len`, then use [`GenericVec::grow`]
    ///
    /// If you know that `new_len` is less than `len`, then use [`GenericVec::truncate`]
    ///
    /// This method requires `T` to implement `Clone`, in order to be able to clone
    /// the passed value. If you need more flexibility (or want to rely on Default
    /// instead of `Clone`), use [`GenericVec::resize_with`].
    ///
    /// # Panic
    ///
    /// May panic or reallocate if the collection is full
    ///
    /// # Panic behavor
    ///
    /// If `F` panics, then all added items will be dropped. This is different
    /// from `std`, where on panic, items will stay in the `Vec`. This behavior
    /// is unstable, and may change in the future.
    pub fn resize(&mut self, new_len: usize, value: T)
    where
        T: Clone,
    {
        match new_len.checked_sub(self.len()) {
            Some(0) => (),
            Some(additional) => self.grow(additional, value),
            None => self.truncate(new_len),
        }
    }

    /// Resizes the [`GenericVec`] in-place so that len is equal to new_len.
    ///
    /// If `new_len` is greater than `len`, the [`GenericVec`] is extended by the
    /// difference, with each additional slot filled with the result of calling
    /// the closure `f`. The return values from `f` will end up in the [`GenericVec`]
    /// in the order they have been generated.
    ///
    /// If `new_len` is less than `len`, the [`GenericVec`] is simply truncated.
    ///
    /// If you know that `new_len` is larger than `len`, then use [`GenericVec::grow_with`]
    ///
    /// If you know that `new_len` is less than `len`, then use [`GenericVec::truncate`]
    ///
    /// This method uses a closure to create new values on every push. If you'd
    /// rather [`Clone`] a given value, use [`GenericVec::resize`]. If you want to
    /// use the [`Default`] trait to generate values, you can pass [`Default::default`]
    /// as the second argument.
    ///
    /// # Panic
    ///
    /// May panic or reallocate if the collection is full
    ///
    /// # Panic behavor
    ///
    /// If `F` panics, then all added items will be dropped. This is different
    /// from `std`, where on panic, items will stay in the `Vec`. This behavior
    /// is unstable, and may change in the future.
    pub fn resize_with<F: FnMut() -> T>(&mut self, new_len: usize, value: F) {
        match new_len.checked_sub(self.len()) {
            Some(0) => (),
            Some(additional) => self.grow_with(additional, value),
            None => self.truncate(new_len),
        }
    }

    /// Clears the vector, removing all values.
    ///
    /// Note that this method has no effect on the allocated capacity of the vector.
    pub fn clear(&mut self) { self.truncate(0); }

    /// Appends an element to the back of a collection.
    ///
    /// # Panic
    ///
    /// May panic or reallocate if the collection is full
    pub fn push(&mut self, value: T) -> &mut T {
        if self.len() == self.capacity() {
            self.reserve(1);
        }

        // Safety
        //
        // * we reserve enough space for 1 more element
        unsafe { self.push_unchecked(value) }
    }

    /// Appends the array to the back of a collection.
    ///
    /// # Panic
    ///
    /// May panic or reallocate if the collection has less than N elements remaining
    #[cfg(any(doc, feature = "nightly"))]
    pub fn push_array<const N: usize>(&mut self, value: [T; N]) -> &mut [T; N] {
        self.reserve(N);

        // Safety
        //
        // * we reserve enough space for N more elements
        unsafe { self.push_array_unchecked(value) }
    }

    /// Inserts an element at position index within the vector,
    /// shifting all elements after it to the right.
    ///
    /// # Panics
    ///
    /// * May panic or reallocate if the collection is full
    /// * Panics if index > len.
    pub fn insert(&mut self, index: usize, value: T) -> &mut T {
        #[cold]
        #[inline(never)]
        fn insert_fail(index: usize, len: usize) -> ! {
            panic!("Tried to insert at {}, but length is {}", index, len);
        }

        if index > self.len() {
            insert_fail(index, self.len())
        }

        if self.is_full() {
            self.reserve(1);
        }

        // Safety
        //
        // * we reserve enough space for 1 more element
        // * we verify that index is in bounds
        unsafe { self.insert_unchecked(index, value) }
    }

    /// Inserts the array at position index within the vector,
    /// shifting all elements after it to the right.
    ///
    /// # Panics
    ///
    /// * May panic or reallocate if the collection has less than N elements remaining
    /// * Panics if index > len.
    #[cfg(any(doc, feature = "nightly"))]
    pub fn insert_array<const N: usize>(&mut self, index: usize, value: [T; N]) -> &mut [T; N] {
        #[cold]
        #[inline(never)]
        fn insert_array_fail(index: usize, size: usize, len: usize) -> ! {
            panic!(
                "Tried to insert array of length {} at {}, but length is {}",
                size, index, len
            );
        }

        if index > self.len() {
            insert_array_fail(index, N, self.len())
        }

        self.reserve(N);

        // Safety
        //
        // * we reserve enough space for N more elements
        // * we verify that index is in bounds
        unsafe { self.insert_array_unchecked(index, value) }
    }

    /// Removes the last element from a vector and returns it
    ///
    /// # Panics
    ///
    /// Panics if the collection is empty
    pub fn pop(&mut self) -> T {
        #[cold]
        #[inline(never)]
        fn pop_fail() -> ! {
            panic!("Tried to pop an element from an empty vector",);
        }

        if self.is_empty() {
            pop_fail()
        }

        // Safety
        //
        // * we verify we are not empty
        unsafe { self.pop_unchecked() }
    }

    /// Removes the last `N` elements from a vector and returns it
    ///
    /// # Panics
    ///
    /// Panics if the collection contains less than `N` elements in it
    #[cfg(any(doc, feature = "nightly"))]
    pub fn pop_array<const N: usize>(&mut self) -> [T; N] {
        #[cold]
        #[inline(never)]
        fn pop_array_fail(size: usize, len: usize) -> ! {
            panic!("Tried to pop an array of size {}, a vector of length {}", size, len);
        }

        if self.len() < N {
            pop_array_fail(N, self.len())
        }

        // Safety
        //
        // * we verify we have at least N elements
        unsafe { self.pop_array_unchecked() }
    }

    /// Removes and returns the element at position index within the vector,
    /// shifting all elements after it to the left.
    ///
    /// # Panics
    ///
    /// Panics if `index` is out of bounds.
    pub fn remove(&mut self, index: usize) -> T {
        #[cold]
        #[inline(never)]
        fn remove_fail(index: usize, len: usize) -> ! {
            panic!("Tried to remove an element at {}, but length is {}", index, len);
        }

        if index > self.len() {
            remove_fail(index, self.len())
        }

        // Safety
        //
        // * we verify that the index is in bounds
        unsafe { self.remove_unchecked(index) }
    }

    /// Removes and returns `N` elements at position index within the vector,
    /// shifting all elements after it to the left.
    ///
    /// # Panics
    ///
    /// Panics if `index` is out of bounds or if `index + N > len()`
    #[cfg(any(doc, feature = "nightly"))]
    pub fn remove_array<const N: usize>(&mut self, index: usize) -> [T; N] {
        #[cold]
        #[inline(never)]
        fn remove_array_fail(index: usize, size: usize, len: usize) -> ! {
            panic!(
                "Tried to remove an array length {} at {}, but length is {}",
                size, index, len
            );
        }

        if self.len() < index || self.len().wrapping_sub(index) < N {
            remove_array_fail(index, N, self.len())
        }

        // Safety
        //
        // * we verify that the index is in bounds
        // * we verify that there are at least `N` elements
        //   after the index
        unsafe { self.remove_array_unchecked(index) }
    }

    /// Removes an element from the vector and returns it.
    ///
    /// The removed element is replaced by the last element of the vector.
    ///
    /// This does not preserve ordering, but is O(1).
    ///
    /// # Panics
    ///
    /// Panics if `index` is out of bounds.
    pub fn swap_remove(&mut self, index: usize) -> T {
        #[cold]
        #[inline(never)]
        fn swap_remove_fail(index: usize, len: usize) -> ! {
            panic!("Tried to remove an element at {}, but length is {}", index, len);
        }

        if index > self.len() {
            swap_remove_fail(index, self.len())
        }

        // Safety
        //
        // * we verify that the index is in bounds
        unsafe { self.swap_remove_unchecked(index) }
    }

    /// Tries to append an element to the back of a collection.
    /// Returns the `Err(value)` if the collection is full
    ///
    /// Guaranteed to not panic/abort/allocate
    pub fn try_push(&mut self, value: T) -> Result<&mut T, T> {
        if self.is_full() {
            Err(value)
        } else {
            // Safety
            //
            // * we reserve enough space for 1 more element
            unsafe { Ok(self.push_unchecked(value)) }
        }
    }

    /// Tries to append an array to the back of a collection.
    /// Returns the `Err(value)` if the collection doesn't have enough remaining capacity
    /// to hold `N` elements.
    ///
    /// Guaranteed to not panic/abort/allocate
    #[cfg(any(doc, feature = "nightly"))]
    pub fn try_push_array<const N: usize>(&mut self, value: [T; N]) -> Result<&mut [T; N], [T; N]> {
        if self.remaining_capacity() < N {
            Err(value)
        } else {
            // Safety
            //
            // * we reserve enough space for N more elements
            unsafe { Ok(self.push_array_unchecked(value)) }
        }
    }

    /// Inserts an element at position index within the vector,
    /// shifting all elements after it to the right.
    /// Returns the `Err(value)` if the collection is full or index is out of bounds
    ///
    /// Guaranteed to not panic/abort/allocate
    pub fn try_insert(&mut self, index: usize, value: T) -> Result<&mut T, T> {
        if self.is_full() || index > self.len() {
            Err(value)
        } else {
            // Safety
            //
            // * we reserve enough space for 1 more element
            // * we verify that index is in bounds
            unsafe { Ok(self.insert_unchecked(index, value)) }
        }
    }

    /// Inserts an array at position index within the vector,
    /// shifting all elements after it to the right.
    /// Returns the `Err(value)` if the collection doesn't have enough remaining capacity
    /// to hold `N` elements or index is out of bounds
    ///
    /// Guaranteed to not panic/abort/allocate
    #[cfg(any(doc, feature = "nightly"))]
    pub fn try_insert_array<const N: usize>(&mut self, index: usize, value: [T; N]) -> Result<&mut [T; N], [T; N]> {
        if self.capacity().wrapping_sub(self.len()) < N || index > self.len() {
            Err(value)
        } else {
            // Safety
            //
            // * we reserve enough space for N more elements
            // * we verify that index is in bounds
            unsafe { Ok(self.insert_array_unchecked(index, value)) }
        }
    }

    /// Removes the last element from a vector and returns it,
    /// Returns `None` if the collection is empty
    ///
    /// Guaranteed to not panic/abort/allocate
    pub fn try_pop(&mut self) -> Option<T> {
        if self.is_empty() {
            None
        } else {
            // Safety
            //
            // * we verify we are not empty
            unsafe { Some(self.pop_unchecked()) }
        }
    }

    /// Removes the last `N` elements from a vector and returns it,
    /// Returns `None` if the collection is has less than N elements
    ///
    /// Guaranteed to not panic/abort/allocate
    #[cfg(any(doc, feature = "nightly"))]
    pub fn try_pop_array<const N: usize>(&mut self) -> Option<[T; N]> {
        if self.is_empty() {
            None
        } else {
            // Safety
            //
            // * we verify we have at least N elements
            unsafe { Some(self.pop_array_unchecked()) }
        }
    }

    /// Removes and returns the element at position index within the vector,
    /// shifting all elements after it to the left.
    /// Returns `None` if collection is empty or `index` is out of bounds.
    ///
    /// Guaranteed to not panic/abort/allocate
    pub fn try_remove(&mut self, index: usize) -> Option<T> {
        if self.len() < index {
            None
        } else {
            // Safety
            //
            // * we verify that the index is in bounds
            unsafe { Some(self.remove_unchecked(index)) }
        }
    }

    /// Removes and returns the element at position index within the vector,
    /// shifting all elements after it to the left.
    /// Returns `None` if the collection is has less than N elements
    /// or `index` is out of bounds.
    ///
    /// Guaranteed to not panic/abort/allocate
    #[cfg(any(doc, feature = "nightly"))]
    pub fn try_remove_array<const N: usize>(&mut self, index: usize) -> Option<[T; N]> {
        if self.len() < index || self.len().wrapping_sub(index) < N {
            None
        } else {
            // Safety
            //
            // * we verify that the index is in bounds
            // * we verify that there are at least `N` elements
            //   after the index
            unsafe { Some(self.remove_array_unchecked(index)) }
        }
    }

    /// Removes an element from the vector and returns it.
    /// Returns `None` if collection is empty or `index` is out of bounds.
    ///
    /// The removed element is replaced by the last element of the vector.
    ///
    /// This does not preserve ordering, but is O(1).
    ///
    /// Guaranteed to not panic/abort/allocate
    pub fn try_swap_remove(&mut self, index: usize) -> Option<T> {
        if index < self.len() {
            // Safety
            //
            // * we verify that the index is in bounds
            unsafe { Some(self.swap_remove_unchecked(index)) }
        } else {
            None
        }
    }

    /// Appends an element to the back of a collection.
    ///
    /// # Safety
    ///
    /// the collection must not be full
    pub unsafe fn push_unchecked(&mut self, value: T) -> &mut T {
        if Some(0) == S::CONST_CAPACITY {
            panic!("Tried to push an element into a zero-capacity vector!")
        }

        debug_assert_ne!(
            self.len(),
            self.capacity(),
            "Tried to `push_unchecked` past capacity! This is UB in release mode"
        );

        // Safety
        //
        // the collection isn't full, so `ptr.add(len)` is valid to write
        unsafe {
            let len = self.len();
            self.set_len_unchecked(len.wrapping_add(1));
            let ptr = self.as_mut_ptr().add(len);
            ptr.write(value);
            &mut *ptr
        }
    }

    /// Appends the array to the back of a collection.
    ///
    /// # Safety
    ///
    /// the collection's remaining capacity must be at least N
    #[cfg(any(doc, feature = "nightly"))]
    pub unsafe fn push_array_unchecked<const N: usize>(&mut self, value: [T; N]) -> &mut [T; N] {
        match S::CONST_CAPACITY {
            Some(n) if n < N => {
                panic!("Tried to push an array larger than the maximum capacity of the vector!")
            }
            _ => (),
        }

        // Safety
        //
        // the collection has at least N remaining elements of capacity left,
        // so `ptr.add(len)` is valid to write `N` elements
        unsafe {
            let len = self.len();
            self.set_len_unchecked(len.wrapping_add(N));
            let ptr = self.as_mut_ptr();
            let out = ptr.add(len) as *mut [T; N];
            out.write(value);
            &mut *out
        }
    }

    /// Inserts an element at position index within the vector,
    /// shifting all elements after it to the right.
    ///
    /// # Safety
    ///
    /// * the collection is must not be full
    /// * hte index must be in bounds
    pub unsafe fn insert_unchecked(&mut self, index: usize, value: T) -> &mut T {
        unsafe {
            if Some(0) == S::CONST_CAPACITY {
                panic!("Tried to insert an element into a zero-capacity vector!")
            }

            // Safety
            //
            // * the index is in bounds
            // * the collection is't full so `ptr.add(len)` is valid to write 1 element
            let len = self.len();
            self.set_len_unchecked(len.wrapping_add(1));
            let ptr = self.storage.as_mut_ptr().add(index);
            ptr.add(1).copy_from(ptr, len.wrapping_sub(index));
            ptr.write(value);
            &mut *ptr
        }
    }

    /// Inserts an array at position index within the vector,
    /// shifting all elements after it to the right.
    ///
    /// # Safety
    ///
    /// * the collection's remaining capacity must be at least N
    /// * hte index must be in bounds
    #[cfg(any(doc, feature = "nightly"))]
    pub unsafe fn insert_array_unchecked<const N: usize>(&mut self, index: usize, value: [T; N]) -> &mut [T; N] {
        match S::CONST_CAPACITY {
            Some(n) if n < N => {
                panic!("Tried to push an array larger than the maximum capacity of the vector!")
            }
            _ => (),
        }

        // Safety
        //
        // * the index is in bounds
        // * the collection has at least N remaining elements of capacity left,
        //   so `ptr.add(len)` is valid to write `N` elements
        unsafe {
            let len = self.len();
            self.set_len_unchecked(len.wrapping_add(N));
            let ptr = self.as_mut_ptr();
            let dist = len.wrapping_sub(index);

            let out = ptr.add(index);
            out.add(N).copy_from(out, dist);
            let out = out as *mut [T; N];
            out.write(value);
            &mut *out
        }
    }

    /// Removes the last element from a vector and returns it
    ///
    /// # Safety
    ///
    /// the collection must not be empty
    pub unsafe fn pop_unchecked(&mut self) -> T {
        if Some(0) == S::CONST_CAPACITY {
            panic!("Tried to remove an element from a zero-capacity vector!")
        }

        let len = self.len();
        debug_assert_ne!(
            len, 0,
            "Tried to `pop_unchecked` an empty array vec! This is UB in release mode"
        );

        // Safety
        //
        // * the collection isn't empty, so `ptr.add(len - 1)` is valid to read
        unsafe {
            let len = len.wrapping_sub(1);
            self.set_len_unchecked(len);
            self.as_mut_ptr().add(len).read()
        }
    }

    /// Removes the last `N` elements from a vector and returns it
    ///
    /// # Safety
    ///
    /// The collection must contain at least `N` elements in it
    #[cfg(any(doc, feature = "nightly"))]
    pub unsafe fn pop_array_unchecked<const N: usize>(&mut self) -> [T; N] {
        match S::CONST_CAPACITY {
            Some(n) if n < N => panic!("Tried to remove {} elements from a {} capacity vector!", N, n),
            _ => (),
        }

        let len = self.len();
        debug_assert!(
            len > N,
            "Tried to remove {} elements from a {} length vector! This is UB in release mode",
            N,
            len,
        );
        // Safety
        //
        // * the collection has at least `N` elements, so `ptr.add(len - N)` is valid to read `N` elements
        unsafe {
            let len = len.wrapping_sub(N);
            self.set_len_unchecked(len);
            self.as_mut_ptr().add(len).cast::<[T; N]>().read()
        }
    }

    /// Removes and returns the element at position index within the vector,
    /// shifting all elements after it to the left.
    ///
    /// # Safety
    ///
    /// the collection must not be empty, and
    /// index must be in bounds
    pub unsafe fn remove_unchecked(&mut self, index: usize) -> T {
        if Some(0) == S::CONST_CAPACITY {
            panic!("Tried to remove an element from a zero-capacity vector!")
        }

        let len = self.len();

        debug_assert!(
            index <= len,
            "Tried to remove an element at index {} from a {} length vector! This is UB in release mode",
            index,
            len,
        );

        // Safety
        //
        // * the index is in bounds
        // * the collection isn't empty, so `ptr.add(len - index - 1)` is valid to read
        unsafe {
            self.set_len_unchecked(len.wrapping_sub(1));
            let ptr = self.storage.as_mut_ptr().add(index);
            let value = ptr.read();
            ptr.copy_from(ptr.add(1), len.wrapping_sub(index).wrapping_sub(1));
            value
        }
    }

    /// Removes and returns the element at position index within the vector,
    /// shifting all elements after it to the left.
    ///
    /// # Safety
    ///
    /// the collection must contain at least N elements, and
    /// index must be in bounds
    #[cfg(any(doc, feature = "nightly"))]
    pub unsafe fn remove_array_unchecked<const N: usize>(&mut self, index: usize) -> [T; N] {
        match S::CONST_CAPACITY {
            Some(n) if n < N => panic!("Tried to remove {} elements from a {} capacity vector!", N, n),
            _ => (),
        }

        let len = self.len();
        debug_assert!(
            index <= len,
            "Tried to remove elements at index {} from a {} length vector! This is UB in release mode",
            index,
            len,
        );
        debug_assert!(
            len.wrapping_sub(index) > N,
            "Tried to remove {} elements from a {} length vector! This is UB in release mode",
            N,
            len,
        );

        // Safety
        //
        // * the index is in bounds
        // * the collection isn't empty, so `ptr.add(len - index - N)` is valid to read `N` elements
        unsafe {
            self.set_len_unchecked(len.wrapping_sub(N));
            let ptr = self.as_mut_ptr().add(index);
            let value = ptr.cast::<[T; N]>().read();
            if N != 0 {
                ptr.copy_from(ptr.add(N), len.wrapping_sub(index).wrapping_sub(N));
            }
            value
        }
    }

    /// Removes an element from the vector and returns it.
    ///
    /// The removed element is replaced by the last element of the vector.
    ///
    /// This does not preserve ordering, but is O(1).
    ///
    /// # Safety
    ///
    /// the `index` must be in bounds
    pub unsafe fn swap_remove_unchecked(&mut self, index: usize) -> T {
        if Some(0) == S::CONST_CAPACITY {
            panic!("Tried to remove an element from a zero-capacity vector!")
        }

        // Safety
        //
        // * the index is in bounds
        // * the collection isn't empty
        unsafe {
            let len = self.len();
            self.set_len_unchecked(len.wrapping_sub(1));
            let ptr = self.storage.as_mut_ptr();
            let at = ptr.add(index);
            let end = ptr.add(len.wrapping_sub(1));
            let value = at.read();
            at.copy_from(end, 1);
            value
        }
    }

    /// Splits the collection into two at the given index.
    ///
    /// Returns a newly allocated vector containing the elements in the range `[at, len)`.
    /// After the call, the original vector will be left containing the elements `[0, at)`
    /// with its previous capacity unchanged.
    ///
    /// ```rust
    /// # use generic_vec::{gvec, SliceVec, uninit_array};
    /// # let mut vec_buf = uninit_array!(3);
    /// # let mut vec2_buf = uninit_array!(5);
    /// # let mut vec: SliceVec<_> = SliceVec::new(&mut vec_buf); vec.extend([1, 2, 3].iter().copied());
    /// # let mut vec2: SliceVec<_> = SliceVec::new(&mut vec2_buf); vec2.extend([4, 5, 6].iter().copied());
    /// assert_eq!(vec, [1, 2, 3]);
    /// assert_eq!(vec2, [4, 5, 6]);
    /// vec.split_off_into(1, &mut vec2);
    /// assert_eq!(vec, [1]);
    /// assert_eq!(vec2, [4, 5, 6, 2, 3]);
    /// ```
    pub fn split_off<B>(&mut self, index: usize) -> GenericVec<T, B>
    where
        B: raw::StorageWithCapacity<T>,
    {
        assert!(
            index <= self.len(),
            "Tried to split at index {}, but length is {}",
            index,
            self.len()
        );

        let mut vec = GenericVec::<T, B>::__with_capacity__const_capacity_checked(
            self.len().wrapping_sub(index),
            S::CONST_CAPACITY,
        );

        self.split_off_into(index, &mut vec);

        vec
    }

    /// Splits the collection into two at the given index.
    ///
    /// Appends the elements from the range `[at, len)` to `other`.
    /// After the call, the original vector will be left containing the elements `[0, at)`
    /// with its previous capacity unchanged.
    ///
    /// ```rust
    /// # use generic_vec::{gvec, SliceVec, uninit_array};
    /// # let mut vec_buf = uninit_array!(3);
    /// # let mut vec2_buf = uninit_array!(5);
    /// # let mut vec: SliceVec<_> = SliceVec::new(&mut vec_buf); vec.extend([1, 2, 3].iter().copied());
    /// # let mut vec2: SliceVec<_> = SliceVec::new(&mut vec2_buf); vec2.extend([4, 5, 6].iter().copied());
    /// assert_eq!(vec, [1, 2, 3]);
    /// assert_eq!(vec2, [4, 5, 6]);
    /// vec.split_off_into(1, &mut vec2);
    /// assert_eq!(vec, [1]);
    /// assert_eq!(vec2, [4, 5, 6, 2, 3]);
    /// ```
    pub fn split_off_into<B>(&mut self, index: usize, other: &mut GenericVec<T, B>)
    where
        B: raw::Storage<T> + ?Sized,
    {
        assert!(
            index <= self.len(),
            "Tried to split at index {}, but length is {}",
            index,
            self.len()
        );

        unsafe {
            // Safety
            //
            // * the index is in bounds
            // * other has reserved enough space
            // * we ignore all elements after index
            let slice = self.get_unchecked(index..);
            other.reserve(slice.len());
            other.extend_from_slice_unchecked(slice);
            self.set_len_unchecked(index);
        }
    }

    /// Moves all the elements of `other` into `Self`, leaving `other` empty.
    ///
    /// Does not change the capacity of either collection.
    ///
    /// ```rust
    /// # use generic_vec::{gvec, SliceVec, uninit_array};
    /// # let mut vec_buf = uninit_array!(6);
    /// # let mut vec2_buf = uninit_array!(3);
    /// # let mut vec: SliceVec<_> = SliceVec::new(&mut vec_buf); vec.extend([1, 2, 3].iter().copied());
    /// # let mut vec2: SliceVec<_> = SliceVec::new(&mut vec2_buf); vec2.extend([4, 5, 6].iter().copied());
    /// assert_eq!(vec, [1, 2, 3]);
    /// assert_eq!(vec2, [4, 5, 6]);
    /// vec.append(&mut vec2);
    /// assert_eq!(vec, [1, 2, 3, 4, 5, 6]);
    /// assert_eq!(vec2, []);
    /// ```
    ///
    /// # Panic
    ///
    /// May panic or reallocate if the collection is full
    pub fn append<B: Storage<T> + ?Sized>(&mut self, other: &mut GenericVec<T, B>) { other.split_off_into(0, self) }

    /// Convert the backing storage type, and moves all the elements in `self` to the new vector
    pub fn convert<B: raw::StorageWithCapacity<T>>(mut self) -> GenericVec<T, B>
    where
        S: Sized,
    {
        self.split_off(0)
    }

    /// Creates a raw cursor that can be used to remove elements in the specified range.
    /// Usage of [`RawCursor`](iter::RawCursor) is `unsafe` because it doesn't do any checks.
    /// [`RawCursor`](iter::RawCursor) is meant to be a low level tool to implement fancier
    /// iterators, like [`GenericVec::drain`], [`GenericVec::drain_filter`],
    /// or [`GenericVec::splice`].
    ///
    /// # Panic
    ///
    /// Panics if the starting point is greater than the end point or if the end point
    /// is greater than the length of the vector.
    #[inline]
    pub fn raw_cursor<R>(&mut self, range: R) -> iter::RawCursor<'_, T, S>
    where
        R: RangeBounds<usize>,
    {
        let range = slice::check_range(self.len(), range);
        iter::RawCursor::new(self, range)
    }

    /// Creates a cursor that can be used to remove elements in the specified range.
    ///
    /// # Panic
    ///
    /// Panics if the starting point is greater than the end point or if the end point
    /// is greater than the length of the vector.
    #[inline]
    pub fn cursor<R>(&mut self, range: R) -> iter::Cursor<'_, T, S>
    where
        R: RangeBounds<usize>,
    {
        iter::Cursor::new(self.raw_cursor(range))
    }

    /// Creates a draining iterator that removes the specified range in the
    /// vector and yields the removed items.
    ///
    /// When the iterator is dropped, all elements in the range are removed from
    /// the vector, even if the iterator was not fully consumed. If the iterator
    /// is not dropped (with `mem::forget` for example), it is unspecified how many
    /// elements are removed.
    ///
    /// # Panic
    ///
    /// Panics if the starting point is greater than the end point or if the end point
    /// is greater than the length of the vector.
    #[inline]
    pub fn drain<R>(&mut self, range: R) -> iter::Drain<'_, T, S>
    where
        R: RangeBounds<usize>,
    {
        iter::Drain::new(self.raw_cursor(range))
    }

    /// Creates an iterator which uses a closure to determine if an element should be removed.
    ///
    /// If the closure returns true, then the element is removed and yielded.
    /// If the closure returns false, the element will remain in the vector
    /// and will not be yielded by the iterator.
    ///
    /// # Panic
    ///
    /// Panics if the starting point is greater than the end point or if the end point
    /// is greater than the length of the vector.
    #[inline]
    pub fn drain_filter<R, F>(&mut self, range: R, f: F) -> iter::DrainFilter<'_, T, S, F>
    where
        R: RangeBounds<usize>,
        F: FnMut(&mut T) -> bool,
    {
        iter::DrainFilter::new(self.raw_cursor(range), f)
    }

    /// Creates a splicing iterator that replaces the specified range in the vector with
    /// the given replace_with iterator and yields the removed items. replace_with does
    /// not need to be the same length as range.
    ///
    /// range is removed even if the iterator is not consumed until the end.
    ///
    /// It is unspecified how many elements are removed from the vector if the
    /// [`Splice`](iter::Splice) value is leaked.
    ///
    /// The input iterator replace_with is only consumed when the [`Splice`](iter::Splice)
    /// value is dropped
    ///
    /// # Panic
    ///
    /// Panics if the starting point is greater than the end point or if the end point
    /// is greater than the length of the vector.
    #[inline]
    pub fn splice<R, I>(&mut self, range: R, replace_with: I) -> iter::Splice<'_, T, S, I::IntoIter>
    where
        R: RangeBounds<usize>,
        I: IntoIterator<Item = T>,
    {
        iter::Splice::new(self.raw_cursor(range), replace_with.into_iter())
    }

    /// Retains only the elements specified by the predicate.
    ///
    /// In other words, remove all elements `e` such that `f(e)` returns false.
    /// This method operates in place, visiting each element exactly once in
    /// the original order, and preserves the order of the retained elements.
    #[inline]
    pub fn retain<F>(&mut self, f: F)
    where
        F: FnMut(&mut T) -> bool,
    {
        fn not<F: FnMut(&mut T) -> bool, T>(mut f: F) -> impl FnMut(&mut T) -> bool { move |value| !f(value) }
        self.drain_filter(.., not(f));
    }

    /// Shallow copies and appends all elements in a slice to the `GenericVec`.
    ///
    /// # Safety
    ///
    /// * You must not drop any of the elements in `slice`
    /// * There must be at least `slice.len()` remaining capacity in the vector
    pub unsafe fn extend_from_slice_unchecked(&mut self, slice: &[T]) {
        debug_assert!(
            self.remaining_capacity() >= slice.len(),
            "Not enough capacity to hold the slice"
        );

        unsafe {
            let len = self.len();
            self.as_mut_ptr()
                .add(len)
                .copy_from_nonoverlapping(slice.as_ptr(), slice.len());
            self.set_len_unchecked(len.wrapping_add(slice.len()));
        }
    }

    /// Clones and appends all elements in a slice to the `GenericVec`.
    ///
    /// Iterates over the slice other, clones each element, and then appends
    /// it to this `GenericVec`. The other vector is traversed in-order.
    ///
    /// Note that this function is same as extend except that it is specialized
    /// to work with slices instead. If and when Rust gets specialization this
    /// function will likely be deprecated (but still available).
    ///
    /// # Panic behavor
    ///
    /// If `T::clone` panics, then all newly added items will be dropped. This is different
    /// from `std`, where on panic, newly added items will stay in the `Vec`. This behavior
    /// is unstable, and may change in the future.
    pub fn extend_from_slice(&mut self, slice: &[T])
    where
        T: Clone,
    {
        self.reserve(self.len());

        // Safety
        //
        // We reserved enough space
        unsafe { extension::Extension::extend_from_slice(self, slice) }
    }

    /// Replaces all of the current elements with the ones in the slice
    ///
    /// equivalent to the following
    ///
    /// ```rust
    /// # let slice = [];
    /// # let mut buffer = generic_vec::uninit_array!(0);
    /// # let mut vec = generic_vec::SliceVec::<()>::new(&mut buffer);
    /// vec.clear();
    /// vec.extend_from_slice(&slice);
    /// ```
    ///
    /// # Panic
    ///
    /// May try to panic/reallocate if there is not enough capacity for the slice
    pub fn clone_from(&mut self, source: &[T])
    where
        T: Clone,
    {
        // If the `self` is longer than `source`, remove excess
        self.truncate(source.len());

        // `self` is now at most the same length as `source`
        //
        // * `init.len() == self.len()`
        // * tail is the rest of the `source`, in the case
        //     that `self` is smaller than `source`
        let (init, tail) = source.split_at(self.len());

        // Clone in the beginning, using `slice::clone_from_slice`
        self.clone_from_slice(init);

        // Append the remaining elements
        self.extend_from_slice(tail);
    }

    /// Removes all but the first of consecutive elements in the vector satisfying
    /// a given equality relation.
    ///
    /// The same_bucket function is passed references to two elements from the
    /// vector and must determine if the elements compare equal. The elements
    /// are passed in opposite order from their order in the slice, so if
    /// same_bucket(a, b) returns true, a is removed.
    ///
    /// If the vector is sorted, this removes all duplicates.
    pub fn dedup_by<F>(&mut self, same_bucket: F)
    where
        F: FnMut(&mut T, &mut T) -> bool,
    {
        let (a, _) = slice::partition_dedup_by(self.as_mut_slice(), same_bucket);
        let new_len = a.len();
        self.truncate(new_len);
    }

    /// Removes all but the first of consecutive elements in the vector that resolve to the same key.
    ///
    /// If the vector is sorted, this removes all duplicates.
    pub fn dedup_by_key<F, K>(&mut self, key: F)
    where
        F: FnMut(&mut T) -> K,
        K: PartialEq,
    {
        #[inline]
        fn key_to_same_bucket<T, F, K>(mut f: F) -> impl FnMut(&mut T, &mut T) -> bool
        where
            F: FnMut(&mut T) -> K,
            K: PartialEq,
        {
            #[inline]
            move |a, b| {
                let a = f(a);
                let b = f(b);
                a == b
            }
        }

        self.dedup_by(key_to_same_bucket(key))
    }

    /// Removes all but the first of consecutive elements in the vector that resolve to the same key.
    ///
    /// If the vector is sorted, this removes all duplicates.
    pub fn dedup<F, K>(&mut self)
    where
        T: PartialEq,
    {
        #[inline]
        fn eq_to_same_buckets<T, F>(mut f: F) -> impl FnMut(&mut T, &mut T) -> bool
        where
            F: FnMut(&T, &T) -> bool,
        {
            #[inline]
            move |a, b| f(a, b)
        }

        self.dedup_by(eq_to_same_buckets(PartialEq::eq))
    }
}