1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
use std::ops::Index;
use std::collections::{HashMap, hash_map};
use crate::SplitAddr::{self,Prefix,Term};
/// Hierarchical prefix tree
#[derive(Debug,Clone,PartialEq)]
pub struct Trie<V> {
leaf_nodes: HashMap<String,V>,
internal_nodes: HashMap<String,Trie<V>>
}
impl<V> Trie<V> {
/// Construct an empty Trie.
pub fn new() -> Self {
Trie {
leaf_nodes: HashMap::new(),
internal_nodes: HashMap::new()
}
}
/// Return `true` if a Trie is empty (has no leaf or internal nodes), otherwise `false`.
pub fn is_empty(&self) -> bool {
self.leaf_nodes.is_empty() && self.internal_nodes.is_empty()
}
/// Return `true` if a Trie has a leaf node at `addr`, otherwise `false`.
pub fn has_leaf_node(&self, addr: &str) -> bool {
match SplitAddr::from_addr(addr) {
Term(addr) => {
self.leaf_nodes.contains_key(addr)
}
Prefix(first, rest) => {
if self.internal_nodes.contains_key(first) {
self.internal_nodes[first].has_leaf_node(rest)
} else {
false
}
}
}
}
/// Return `Some(&value)` if `self` contains a `value` located at `addr`, otherwise `None`.
pub fn get_leaf_node(&self, addr: &str) -> Option<&V> {
match SplitAddr::from_addr(addr) {
Term(addr) => {
self.leaf_nodes.get(addr)
}
Prefix(first, rest) => {
self.internal_nodes[first].get_leaf_node(rest)
}
}
}
/// Insert `value` as a leaf node located at `addr`.
///
/// If there was a value `prev` located at `addr`, return `Some(prev)`, otherwise `None`.
pub fn insert_leaf_node(&mut self, addr: &str, value: V) -> Option<V> {
match SplitAddr::from_addr(addr) {
Term(addr) => {
self.leaf_nodes.insert(addr.to_string(), value)
}
Prefix(first, rest) => {
let node = self.internal_nodes
.entry(first.to_string())
.or_insert(Trie::new());
node.insert_leaf_node(rest, value)
}
}
}
/// Return `Some(value)` if `self` contains a `value` located at `addr` and remove `value` from the leaf nodes, otherwise return `None`.
pub fn remove_leaf_node(&mut self, addr: &str) -> Option<V> {
match SplitAddr::from_addr(addr) {
Term(addr) => {
self.leaf_nodes.remove(addr)
}
Prefix(first, rest) => {
let node = self.internal_nodes.get_mut(first).unwrap();
let leaf = node.remove_leaf_node(rest);
if node.is_empty() {
self.remove_internal_node(first);
}
leaf
}
}
}
/// Return an iterator over a Trie's leaf nodes.
pub fn leaf_iter(&self) -> hash_map::Iter<'_, String, V> {
self.leaf_nodes.iter()
}
/// Return `true` if a Trie has an internal node at `addr`, otherwise `false`.
pub fn has_internal_node(&self, addr: &str) -> bool {
match SplitAddr::from_addr(addr) {
Term(addr) => {
self.internal_nodes.contains_key(addr)
}
Prefix(first, rest) => {
if self.internal_nodes.contains_key(first) {
self.internal_nodes[first].has_internal_node(rest)
} else {
false
}
}
}
}
/// Return `Some(&subtrie)` if `self` contains a `subtrie` located at `addr`, otherwise `None`.
pub fn get_internal_node(&self, addr: &str) -> Option<&Self> {
match SplitAddr::from_addr(addr) {
Term(addr) => {
self.internal_nodes.get(addr)
}
Prefix(first, rest) => {
self.internal_nodes[first].get_internal_node(rest)
}
}
}
/// Insert `subtrie` as an internal node located at `addr`.
///
/// If there was a value `prev_subtrie` located at `addr`, return `Some(prev_subtrie)`, otherwise `None`.
/// Panics if `subtrie.is_empty()`.
pub fn insert_internal_node(&mut self, addr: &str, new_node: Self) -> Option<Trie<V>> {
match SplitAddr::from_addr(addr) {
Term(addr) => {
if !new_node.is_empty() {
self.internal_nodes.insert(addr.to_string(), new_node)
} else {
panic!("attempted to insert empty inode")
}
}
Prefix(first, rest) => {
let node = self.internal_nodes
.entry(first.to_string())
.or_insert(Trie::new());
node.insert_internal_node(rest, new_node)
}
}
}
/// Return `Some(subtrie)` if `self` contains a `subtrie` located at `addr` and remove `subtrie` from the internal nodes, otherwise return `None`.
pub fn remove_internal_node(&mut self, addr: &str) -> Option<Trie<V>> {
match SplitAddr::from_addr(addr) {
Term(addr) => {
self.internal_nodes.remove(addr)
}
Prefix(first, _) => {
self.internal_nodes.remove(first)
}
}
}
/// Return an iterator over a Trie's internal nodes.
pub fn internal_iter(&self) -> hash_map::Iter<'_, String, Trie<V>> {
self.internal_nodes.iter()
}
/// Merge `other` into `self`, freeing previous values and subtries at each `addr` in `self` if `other` also has an entry at `addr`.
///
/// Returns the mutated `self`.
pub fn merge(mut self, other: Self) -> Self {
for (addr, value) in other.leaf_nodes.into_iter() {
self.insert_leaf_node(&addr, value);
}
for (addr, subtrie) in other.internal_nodes.into_iter() {
self.insert_internal_node(&addr, subtrie);
}
self
}
}
// specializations
impl<V> Trie<(V,f64)> {
/// Return the sum of all the weights of the leaf nodes and the recursive sum of all internal nodes.
pub fn sum(&self) -> f64 {
self.internal_nodes.values().fold(0., |acc, t| acc + t.sum()) +
self.leaf_nodes.values().fold(0., |acc, v| acc + v.1)
}
/// Convert a weighted `Trie` into the equivalent unweighted version by discarding all the weights.
pub fn into_unweighted(self) -> Trie<V> {
Trie {
internal_nodes: self.internal_nodes.into_iter().map(|(addr, t)| (addr, t.into_unweighted())).collect::<_>(),
leaf_nodes: self.leaf_nodes.into_iter().map(|(addr, v)| (addr, v.0)).collect::<_>()
}
}
/// Convert an unweighted `Trie` into the equivalent weighted version by adding a weight of `0.` to all leaf nodes.
pub fn from_unweighted(trie: Trie<V>) -> Self {
Trie {
internal_nodes: trie.internal_nodes.into_iter().map(|(addr, t)| (addr, Self::from_unweighted(t))).collect::<_>(),
leaf_nodes: trie.leaf_nodes.into_iter().map(|(addr, v)| (addr, (v, 0.))).collect::<_>()
}
}
}
use std::{rc::Rc,any::Any};
impl Trie<Rc<dyn Any>> {
/// Optimistically casts the reference-counted `dyn Any` at `addr` into type `V`, and returns a cloned value.
pub fn read<V: 'static + Clone>(&self, addr: &str) -> V {
self.get_leaf_node(addr)
.unwrap()
.clone()
.downcast::<V>()
.ok()
.unwrap()
.as_ref()
.clone()
}
}
impl Trie<(Rc<dyn Any>,f64)> {
/// Optimistically casts the reference-counted `dyn Any` at `addr` into type `V`, and returns a cloned value.
pub fn read<V: 'static + Clone>(&self, addr: &str) -> V {
self.get_leaf_node(addr)
.unwrap().0
.clone()
.downcast::<V>()
.ok()
.unwrap()
.as_ref()
.clone()
}
}
impl<V> Index<&str> for Trie<V> {
type Output = V;
fn index(&self, index: &str) -> &Self::Output {
self.get_leaf_node(index).unwrap()
}
}