1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
//! Gemini's implementation of 3D rendering. Experimental
//!
//! ## A Simple 3D Scene
//! Let's write a simple example program to print a spinning cube:
//! ```rust,no_run
//! use gemini_engine::elements::{
//! view::ColChar,
//! Vec2D, View,
//! };
//! use gemini_engine::elements3d::{DisplayMode, Mesh3D, Vec3D, Viewport};
//! use gemini_engine::gameloop;
//!
//! const FPS: u32 = 20;
//! const FOV: f64 = 5000.0;
//!
//! fn main() {
//!     let mut frame_skip = false;
//!     let mut view = View::new(350, 90, ColChar::BACKGROUND);
//!
//!     let mut viewport = Viewport::new(
//!         Vec3D::new(0.0, 0.0, 250.0),
//!         Vec3D::new(-0.5, 0.0, 0.0),
//!         FOV,
//!         Vec2D::new((view.width / 2) as isize, (view.height / 2) as isize),
//!     );
//!
//!     let cube = Mesh3D::default_cube();
//!
//!     loop {
//!         let now = gameloop::Instant::now();
//!         view.clear();
//!
//!         viewport.rotation.y -= 0.05;
//!
//!         match frame_skip {
//!             true => frame_skip = false,
//!             false => {
//!                 viewport.blit_to(&mut view, vec![&cube], DisplayMode::Solid);
//!                 view.display_render().unwrap();
//!             }
//!         }
//!
//!         let elapsed = now.elapsed();
//!         println!(
//!             "Elapsed: {:.2?}µs | Frame skip: {}",
//!             elapsed.as_micros(),
//!             frame_skip
//!         );
//!
//!         frame_skip = gameloop::sleep_fps(FPS, Some(elapsed));
//!     }
//! }
//! ```
//! There is a lot of code here, but since it's based off of the [`gameloop`](crate::gameloop) principle (Go to the [`gameloop`](crate::gameloop) documentation page to learn more), we'll only focus on the parts that are different from the [`gameloop`](crate::gameloop) example:
//!
//! ### Initialisation
//! ```rust,no_run
//! # use gemini_engine::elements::{View, Vec2D, view::ColChar};
//! # use gemini_engine::elements3d::{Viewport, Vec3D, Mesh3D};
//! # const FOV: f64 = 5000.0;
//! let mut view = View::new(350, 90, ColChar::BACKGROUND);
//!
//! let mut viewport = Viewport::new(
//!     Vec3D::new(0.0, 0.0, 250.0),
//!     Vec3D::new(-0.5, 0.0, 0.0),
//!     FOV,
//!     Vec2D::new((view.width / 2) as isize, (view.height / 2) as isize),
//! );
//!
//! let cube = Mesh3D::default_cube();
//! ```
//! `main()` begins with the creation of all the necessary objects to render 3D images:
//! 1. [`View`](crate::elements::view::View) to handle the canvas and printing to the screen
//! 2. [`Viewport`] to handle converting 3d objects to 2d images, as well as acting like the scene's camera
//! 3. The actual objects you intend to use in the scene, all of which should implement the [`ViewElement3D`] trait
//!
//! In this scenario, we create a [`View`](crate::elements::view::View) of width 350 and height 90 (you may have to zoom out and expand your terminal to fit the whole image), a [`Viewport`] with an initial position 250 units away from the centre and pivoted 0.5 radians up with an origin point in the middle of the [`View`](crate::elements::view::View) and a single default cube, which is 2 units tall, wide and long and is placed directly in the middle of the scene.
//!
//! ### Gameloop process logic
//! ```rust,no_run
//! # use gemini_engine::elements::{View, Vec2D, view::ColChar};
//! # use gemini_engine::elements3d::{Viewport, Vec3D};
//! # const FOV: f64 = 5000.0;
//! # let view = View::new(350, 90, ColChar::BACKGROUND);
//! # let mut viewport = Viewport::new(
//! #     Vec3D::new(0.0, 0.0, 250.0),
//! #     Vec3D::new(-0.5, 0.0, 0.0),
//! #     FOV,
//! #     Vec2D::new((view.width / 2) as isize, (view.height / 2) as isize),
//! # );
//! viewport.rotation.y -= 0.05;
//! ```
//!
//! This part of the code is where we would put all our physics, collisions, events etc. code, but in this case the only thing we do is rotate the cube 0.05 radians anticlockwise.
//!
//! ### Blitting/Rendering
//! ```rust,no_run
//! # use gemini_engine::elements::{View, Vec2D, view::ColChar};
//! # use gemini_engine::elements3d::{Viewport, Vec3D, Mesh3D, DisplayMode};
//! # const FOV: f64 = 5000.0;
//! # let mut view = View::new(350, 90, ColChar::BACKGROUND);
//! # let viewport = Viewport::new(
//! #     Vec3D::new(0.0, 0.0, 250.0),
//! #     Vec3D::new(-0.5, 0.0, 0.0),
//! #     FOV,
//! #     Vec2D::new((view.width / 2) as isize, (view.height / 2) as isize),
//! # );
//! # let cube = Mesh3D::default_cube();
//! viewport.blit_to(&mut view, vec![&cube], DisplayMode::Solid);
//! view.display_render().unwrap();
//! ```
//!
//! This part of the code blits all the 3d stuff to the [`View`](crate::elements::view::View) before rendering as usual. [`Viewport.blit_to()`](Viewport#blit_to) takes a mutable reference to the view, a list of all the objects we want to render and a [`DisplayMode`] enum (more info in the [`DisplayMode`] documentation).

use crate::elements::view::{ColChar, Modifier, Vec2D};
pub mod view3d;
pub use view3d::{DisplayMode, Face, SpatialAxis, Vec3D, ViewElement3D, Viewport};

pub struct Mesh3D {
    pub pos: Vec3D,
    pub rotation: Vec3D,
    pub vertices: Vec<Vec3D>,
    pub faces: Vec<Face>,
}

impl Mesh3D {
    /// The gemini_engine equivalent of Blender's default cube. Has side lengths of 2
    pub fn default_cube() -> Self {
        Self::new(
            Vec3D::ZERO,
            Vec3D::ZERO,
            vec![
                Vec3D::new(1.0, 1.0, -1.0),
                Vec3D::new(1.0, 1.0, 1.0),
                Vec3D::new(1.0, -1.0, -1.0),
                Vec3D::new(1.0, -1.0, 1.0),
                Vec3D::new(-1.0, 1.0, -1.0),
                Vec3D::new(-1.0, 1.0, 1.0),
                Vec3D::new(-1.0, -1.0, -1.0),
                Vec3D::new(-1.0, -1.0, 1.0),
            ],
            vec![
                Face::new(vec![2, 3, 1, 0], ColChar::SOLID.with_mod(Modifier::BLUE)),
                Face::new(vec![4, 5, 7, 6], ColChar::SOLID.with_mod(Modifier::BLUE)),
                Face::new(vec![1, 3, 7, 5], ColChar::SOLID.with_mod(Modifier::None)),
                Face::new(vec![4, 6, 2, 0], ColChar::SOLID.with_mod(Modifier::None)),
                Face::new(vec![6, 7, 3, 2], ColChar::SOLID.with_mod(Modifier::RED)),
                Face::new(vec![0, 1, 5, 4], ColChar::SOLID.with_mod(Modifier::RED)),
            ],
        )
    }

    /// A gimbal to help you orient in gemini_engine's 3D space. The orientation is as follows (from the default [`Viewport`])
    /// - X (red) increases as you move to the right
    /// - Y (green) increases as you move up
    /// - Z (blue) increases as you move away from the viewport
    ///
    /// Think of it like Blender's axes but with Y and Z swapped
    pub fn gimbal() -> Self {
        Self::new(
            Vec3D::ZERO,
            Vec3D::ZERO,
            vec![
                Vec3D::ZERO,
                Vec3D::new(1.0, 0.0, 0.0),
                Vec3D::new(0.0, 1.0, 0.0),
                Vec3D::new(0.0, 0.0, 1.0),
            ],
            vec![
                Face::new(vec![0, 1], ColChar::SOLID.with_mod(Modifier::RED)),
                Face::new(vec![0, 2], ColChar::SOLID.with_mod(Modifier::GREEN)),
                Face::new(vec![0, 3], ColChar::SOLID.with_mod(Modifier::BLUE)),
            ],
        )
    }

    pub fn new(pos: Vec3D, rotation: Vec3D, vertices: Vec<Vec3D>, faces: Vec<Face>) -> Self {
        Self {
            pos: pos,
            rotation: rotation,
            vertices: vertices,
            faces: faces,
        }
    }
}

impl Clone for Mesh3D {
    fn clone(&self) -> Self {
        Self {
            pos: self.pos,
            rotation: self.rotation,
            vertices: self.vertices.clone(),
            faces: self.faces.clone(),
        }
    }
}

impl ViewElement3D for Mesh3D {
    fn get_pos(&self) -> Vec3D {
        self.pos.clone()
    }
    fn get_rotation(&self) -> Vec3D {
        self.rotation.clone()
    }
    fn get_vertices(&self) -> Vec<Vec3D> {
        self.vertices.clone()
    }
    fn get_faces(&self) -> Vec<Face> {
        self.faces.clone()
    }
    fn vertices_on_screen(&self, viewport: &Viewport) -> Vec<(Vec2D, f64)> {
        let mut screen_vertices = vec![];
        for vertex in &self.vertices {
            let pos = vertex.global_position(&viewport, self);

            let screen_coordinates = viewport.spatial_to_screen(pos);
            screen_vertices.push((screen_coordinates, pos.z));
        }

        screen_vertices
    }
}