fyrox_graphics/
gpu_program.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
// Copyright (c) 2019-present Dmitry Stepanov and Fyrox Engine contributors.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.

use crate::{
    core::{
        algebra::{Matrix2, Matrix3, Matrix4, Vector2, Vector3, Vector4},
        reflect::prelude::*,
        sstorage::ImmutableString,
        type_traits::prelude::*,
        visitor::prelude::*,
        Downcast,
    },
    error::FrameworkError,
};
use serde::{Deserialize, Serialize};
use std::marker::PhantomData;
use strum_macros::{AsRefStr, EnumString, VariantNames};

pub trait GpuProgram: Downcast {
    fn uniform_location(&self, name: &ImmutableString) -> Result<UniformLocation, FrameworkError>;
    fn uniform_block_index(&self, name: &ImmutableString) -> Result<usize, FrameworkError>;
}

#[derive(Clone, Debug)]
pub struct UniformLocation {
    pub id: glow::UniformLocation,
    // Force compiler to not implement Send and Sync, because OpenGL is not thread-safe.
    pub thread_mark: PhantomData<*const u8>,
}

/// A fallback value for the sampler.
///
/// # Notes
///
/// Sometimes you don't want to set a value to a sampler, or you even don't have the appropriate
/// one. There is fallback value that helps you with such situations, it defines a values that
/// will be fetched from a sampler when there is no texture.
///
/// For example, standard shader has a lot of samplers defined: diffuse, normal, height, emission,
/// mask, metallic, roughness, etc. In some situations you may not have all the textures, you have
/// only diffuse texture, to keep rendering correct, each other property has appropriate fallback
/// value. Normal sampler - a normal vector pointing up (+Y), height - zero, emission - zero, etc.
///
/// Fallback value is also helpful to catch missing textures, you'll definitely know the texture is
/// missing by very specific value in the fallback texture.
#[derive(
    Serialize,
    Deserialize,
    Default,
    Debug,
    PartialEq,
    Clone,
    Copy,
    Visit,
    Eq,
    Reflect,
    AsRefStr,
    EnumString,
    VariantNames,
    TypeUuidProvider,
)]
#[type_uuid(id = "791b333c-eb3f-4279-97fe-cf2ba45c6d78")]
pub enum SamplerFallback {
    /// A 1x1px white texture.
    #[default]
    White,
    /// A 1x1px texture with (0, 1, 0) vector.
    Normal,
    /// A 1x1px black texture.
    Black,
    /// A 1x1x1 volume texture with 1 black pixel.
    Volume,
}

#[derive(Serialize, Deserialize, Default, Debug, PartialEq, Clone, Copy, Visit, Eq, Reflect)]
pub enum SamplerKind {
    Sampler1D,
    #[default]
    Sampler2D,
    Sampler3D,
    SamplerCube,
    USampler1D,
    USampler2D,
    USampler3D,
    USamplerCube,
}

/// Shader property with default value.
#[derive(Serialize, Deserialize, Debug, PartialEq, Reflect, Visit)]
pub enum ShaderResourceKind {
    /// A texture.
    Texture {
        /// Kind of the texture.
        kind: SamplerKind,

        /// Fallback value.
        ///
        /// Sometimes you don't want to set a value to a texture binding, or you even don't have the appropriate
        /// one. There is fallback value that helps you with such situations, it defines a set of values that
        /// will be fetched from a texture binding point when there is no actual texture.
        ///
        /// For example, standard shader has a lot of samplers defined: diffuse, normal, height, emission,
        /// mask, metallic, roughness, etc. In some situations you may not have all the textures, you have
        /// only diffuse texture, to keep rendering correct, each other property has appropriate fallback
        /// value. Normal sampler - a normal vector pointing up (+Y), height - zero, emission - zero, etc.
        ///
        /// Fallback value is also helpful to catch missing textures, you'll definitely know the texture is
        /// missing by very specific value in the fallback texture.
        fallback: SamplerFallback,
    },
    PropertyGroup(Vec<ShaderProperty>),
}

#[derive(Serialize, Deserialize, Debug, PartialEq, Reflect, Visit)]
pub enum ShaderPropertyKind {
    /// Real number.
    Float(f32),

    /// Real number array.
    FloatArray {
        value: Vec<f32>,
        /// `max_len` defines the maximum number of elements in the shader.
        max_len: usize,
    },

    /// Integer number.
    Int(i32),

    /// Integer number array.
    IntArray {
        value: Vec<i32>,
        /// `max_len` defines the maximum number of elements in the shader.
        max_len: usize,
    },

    /// Natural number.
    UInt(u32),

    /// Natural number array.
    UIntArray {
        value: Vec<u32>,
        /// `max_len` defines the maximum number of elements in the shader.
        max_len: usize,
    },

    /// Boolean value.
    Bool(bool),

    /// Two-dimensional vector.
    Vector2(Vector2<f32>),

    /// Two-dimensional vector array.
    Vector2Array {
        value: Vec<Vector2<f32>>,
        /// `max_len` defines the maximum number of elements in the shader.
        max_len: usize,
    },

    /// Three-dimensional vector.
    Vector3(Vector3<f32>),

    /// Three-dimensional vector array.
    Vector3Array {
        value: Vec<Vector3<f32>>,
        /// `max_len` defines the maximum number of elements in the shader.
        max_len: usize,
    },

    /// Four-dimensional vector.
    Vector4(Vector4<f32>),

    /// Four-dimensional vector array.
    Vector4Array {
        value: Vec<Vector4<f32>>,
        /// `max_len` defines the maximum number of elements in the shader.
        max_len: usize,
    },

    /// 2x2 Matrix.
    Matrix2(Matrix2<f32>),

    /// 2x2 Matrix array.
    Matrix2Array {
        value: Vec<Matrix2<f32>>,
        /// `max_len` defines the maximum number of elements in the shader.
        max_len: usize,
    },

    /// 3x3 Matrix.
    Matrix3(Matrix3<f32>),

    /// 3x3 Matrix array.
    Matrix3Array {
        value: Vec<Matrix3<f32>>,
        /// `max_len` defines the maximum number of elements in the shader.
        max_len: usize,
    },

    /// 4x4 Matrix.
    Matrix4(Matrix4<f32>),

    /// 4x4 Matrix array.
    Matrix4Array {
        value: Vec<Matrix4<f32>>,
        /// `max_len` defines the maximum number of elements in the shader.
        max_len: usize,
    },

    /// An sRGB color.
    ///
    /// # Conversion
    ///
    /// The colors you see on your monitor are in sRGB color space, this is fine for simple cases
    /// of rendering, but not for complex things like lighting. Such things require color to be
    /// linear. Value of this variant will be automatically **converted to linear color space**
    /// before it passed to shader.
    Color {
        /// Default Red.
        r: u8,

        /// Default Green.
        g: u8,

        /// Default Blue.
        b: u8,

        /// Default Alpha.
        a: u8,
    },
}

#[derive(Serialize, Deserialize, Debug, PartialEq, Reflect, Visit, Default)]
pub struct ShaderProperty {
    pub name: ImmutableString,
    pub kind: ShaderPropertyKind,
}

impl ShaderProperty {
    pub fn new(name: impl Into<ImmutableString>, kind: ShaderPropertyKind) -> Self {
        Self {
            name: name.into(),
            kind,
        }
    }
}

impl Default for ShaderPropertyKind {
    fn default() -> Self {
        Self::Float(0.0)
    }
}

impl Default for ShaderResourceKind {
    fn default() -> Self {
        Self::PropertyGroup(Default::default())
    }
}

/// Shader resource definition.
#[derive(Default, Serialize, Deserialize, Debug, PartialEq, Reflect, Visit)]
pub struct ShaderResourceDefinition {
    /// A name of the resource.
    pub name: ImmutableString,
    /// A kind of resource.
    pub kind: ShaderResourceKind,
    pub binding: usize,
}

impl ShaderResourceDefinition {
    pub fn is_built_in(&self) -> bool {
        self.name.starts_with("fyrox_")
    }
}