fyrox_graphics/
geometry_buffer.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
// Copyright (c) 2019-present Dmitry Stepanov and Fyrox Engine contributors.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.

//! Geometry buffer is a mesh buffer, that could contain multiple vertex buffers and only one
//! element buffer.

#![warn(missing_docs)]

use crate::{
    buffer::BufferUsage,
    core::{array_as_u8_slice, math::TriangleDefinition, Downcast},
    ElementKind,
};
use bytemuck::Pod;
use std::mem::size_of;

/// Attribute kind of a vertex.
#[derive(Copy, Clone)]
#[allow(dead_code)]
pub enum AttributeKind {
    /// Floating point 32-bit number.
    Float,
    /// Integer unsigned 8-bit number.
    UnsignedByte,
    /// Integer unsigned 16-bit number.
    UnsignedShort,
    /// Integer unsigned 32-bit number.
    UnsignedInt,
}

/// Vertex attribute definition.
pub struct AttributeDefinition {
    /// Binding point of the vertex attribute.
    pub location: u32,
    /// Vertex attribute kind. See [`AttributeKind`] docs for more info.
    pub kind: AttributeKind,
    /// Component count in the vertex. This could be 1,2,3 or 4.
    pub component_count: usize,
    /// A flag, that defines whether the attribute is normalized or not. Normalized attributes
    /// are always real numbers in `[-1.0; 1.0]` range (or `[0.0; 1.0]` for unsigned attributes).
    pub normalized: bool,
    /// Defines feed rate of the vertex attribute. 0 - means that the attribute will be unique per
    /// vertex, 1 - per each drawn instance, 2 - per two instances and so on.
    pub divisor: u32,
}

impl AttributeKind {
    /// Returns attribute size in bytes.
    pub fn size(self) -> usize {
        match self {
            AttributeKind::Float => size_of::<f32>(),
            AttributeKind::UnsignedByte => size_of::<u8>(),
            AttributeKind::UnsignedShort => size_of::<u16>(),
            AttributeKind::UnsignedInt => size_of::<u32>(),
        }
    }
}

/// Untyped vertex buffer data.
pub struct VertexBufferData<'a> {
    /// Vertex size.
    pub element_size: usize,
    /// Vertex buffer data.
    pub bytes: Option<&'a [u8]>,
}

impl<'a> VertexBufferData<'a> {
    /// Creates a new untyped vertex buffer data from a typed slice. Underlying type must implement
    /// [`Pod`] trait!
    pub fn new<T: Pod>(vertices: Option<&'a [T]>) -> Self {
        Self {
            element_size: size_of::<T>(),
            bytes: vertices.map(|v| array_as_u8_slice(v)),
        }
    }
}

/// Vertex buffer descriptor contains information about vertex buffer layout and content usage as
/// well as the data that will be uploaded to GPU.
pub struct VertexBufferDescriptor<'a> {
    /// Vertex buffer usage. See [`BufferUsage`] docs for more info.
    pub usage: BufferUsage,
    /// Attributes of the vertex buffer.
    pub attributes: &'a [AttributeDefinition],
    /// Data of the vertex buffer. See [`VertexBufferData`] docs for more info.
    pub data: VertexBufferData<'a>,
}

/// Describes elements for the geometry buffer.
pub enum ElementsDescriptor<'a> {
    /// Triangles are formed by a triple of vertex indices.
    Triangles(&'a [TriangleDefinition]),
    /// Lines are formed by a pair of vertex indices.
    Lines(&'a [[u32; 2]]),
    /// Points are just straight vertex indices.
    Points(&'a [u32]),
}

impl ElementsDescriptor<'_> {
    /// Returns element kind of the elements' descriptor.
    pub fn element_kind(&self) -> ElementKind {
        match self {
            ElementsDescriptor::Triangles(_) => ElementKind::Triangle,
            ElementsDescriptor::Lines(_) => ElementKind::Line,
            ElementsDescriptor::Points(_) => ElementKind::Point,
        }
    }
}

/// Descriptor of the geometry buffer. It essentially binds multiple vertex buffers and one element
/// buffer.
pub struct GeometryBufferDescriptor<'a> {
    /// Vertex buffers of the buffer. There must be at least one vertex buffer.
    pub buffers: &'a [VertexBufferDescriptor<'a>],
    /// Usage of the geometry buffer. See [`BufferUsage`] docs for more info.
    pub usage: BufferUsage,
    /// Elements of the geometry buffer.
    pub elements: ElementsDescriptor<'a>,
}

/// Geometry buffer is a mesh buffer, that could contain multiple vertex buffers and only one
/// element buffer. Element could be either a line or triangle (the most commonly used one).
///
/// ## Examples
///
/// The simplest possible example shows how to create a geometry buffer that has a single triangle:
///
/// ```rust
/// use fyrox_graphics::{
///     buffer::BufferUsage,
///     core::{algebra::Vector3, math::TriangleDefinition},
///     error::FrameworkError,
///     geometry_buffer::{
///         AttributeDefinition, AttributeKind, ElementsDescriptor, GeometryBuffer,
///         GeometryBufferDescriptor, VertexBufferData, VertexBufferDescriptor,
///     },
///     server::GraphicsServer,
/// };
/// use bytemuck::{Pod, Zeroable};
///
/// // Vertex type must implement a bunch of traits, that guarantees that the data will be tightly
/// // packed with expected order of elements.
/// #[derive(Pod, Copy, Clone, Zeroable)]
/// #[repr(C)]
/// struct Vertex {
///     position: Vector3<f32>,
/// }
///
/// fn create_geometry_buffer(
///     server: &dyn GraphicsServer,
/// ) -> Result<Box<dyn GeometryBuffer>, FrameworkError> {
///     let vertices = [
///         Vertex {
///             position: Vector3::new(0.0, 0.0, 0.0),
///         },
///         Vertex {
///             position: Vector3::new(0.0, 1.0, 0.0),
///         },
///         Vertex {
///             position: Vector3::new(1.0, 0.0, 0.0),
///         },
///     ];
///
///     let triangles = [TriangleDefinition([0, 1, 2])];
///
///     server.create_geometry_buffer(GeometryBufferDescriptor {
///         buffers: &[VertexBufferDescriptor {
///             usage: BufferUsage::StaticDraw,
///             attributes: &[AttributeDefinition {
///                 location: 0,
///                 kind: AttributeKind::Float,
///                 component_count: 3,
///                 normalized: false,
///                 divisor: 0,
///             }],
///             data: VertexBufferData::new(Some(&vertices)),
///         }],
///         usage: BufferUsage::StaticDraw,
///         elements: ElementsDescriptor::Triangles(&triangles),
///     })
/// }
/// ```
pub trait GeometryBuffer: Downcast {
    /// Write untyped data to a vertex buffer with the given index.
    fn set_buffer_data(&self, buffer: usize, data: &[u8]);

    /// Returns total number of elements in the geometry buffer.
    fn element_count(&self) -> usize;

    /// Writes triangles to the buffer. Each triangle definition contains triangle indices, that
    /// forms the triangle.
    fn set_triangles(&self, triangles: &[TriangleDefinition]);

    /// Writes lines to the buffer. Each pair defines starting and ending vertex index of the line.
    fn set_lines(&self, lines: &[[u32; 2]]);

    /// Writes points to the buffer. Each index in the slice defines vertex index.
    fn set_points(&self, points: &[u32]);
}

impl dyn GeometryBuffer {
    /// Writes a typed data to a vertex buffer with the given index. Underlying type must implement
    /// [`Pod`] trait!
    pub fn set_buffer_data_of_type<T: Pod>(&mut self, buffer: usize, data: &[T]) {
        self.set_buffer_data(buffer, array_as_u8_slice(data))
    }
}