fuzzy_dbscan 0.3.0

An implementation of the FuzzyDBSCAN algorithm
Documentation
# fuzzy_dbscan [![Crates.io]https://img.shields.io/crates/v/fuzzy_dbscan.svg]https://crates.io/crates/fuzzy_dbscan [![Docs.rs]https://docs.rs/fuzzy_dbscan/badge.svg]https://docs.rs/fuzzy_dbscan

An implementation of the FuzzyDBSCAN algorithm [1].

FuzzyDBSCAN is an agglomerative [fuzzy clustering](https://en.wikipedia.org/wiki/Fuzzy_clustering) algorithm that groups a set of points in such a way that one point can belong to more than one group. The assignment of a point is expressed as a category (core, border, noise) and a soft label (between 0.0 and 1.0). Only points from the border category can be assigned ambiguously.

![Example](https://github.com/schulzch/fuzzy_dbscan/raw/master/doc/example.svg?sanitize=true)

An example of two slightly connected clusters (red and blue) where the transition is assigned to both clusters, i.e., fuzzy (red + blue = purple).
Core points have an enclosing circle, whereas border points do not.
The opacity indicates the degree of membership, i.e., soft label.

## Usage

See [documentation](https://docs.rs/fuzzy_dbscan) for an example.

## Usage (WASM)

Compile the crate to WASM using `wasm-pack build --target=nodejs` (or `--target=browser`), then run it using:
```js
var FuzzyDBSCAN = require('fuzzy_dbscan.js'); // only for Node.js

var fuzzyDBSCAN = new FuzzyDBSCAN.FuzzyDBSCAN();
fuzzyDBSCAN.eps_min = 10.0;
fuzzyDBSCAN.eps_max = 20.0;
fuzzyDBSCAN.pts_min = 1;
fuzzyDBSCAN.pts_max = 2;

console.log(fuzzyDBSCAN.cluster([{x: 0, y: 0}, {x: 100, y: 100}, {x: 105, y: 105}, {x: 115, y: 115}]));
```

## References

[1] Dino Ienco, and Gloria Bordogna. "Fuzzy extensions of the DBScan clustering algorithm." Soft Computing (2016).

## Versioning

This project is maintained under the [Semantic Versioning](http://semver.org/) guidelines.

## License

Licensed under the [Apache 2.0 License](https://www.apache.org/licenses/LICENSE-2.0). Copyright © 2018 Christoph Schulz.