fundsp 0.20.0

Audio processing and synthesis library.
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
//! Audio dynamics related components.

use super::audionode::*;
use super::buffer::*;
use super::follow::*;
use super::math::*;
use super::shared::*;
use super::signal::*;
use super::*;
use core::sync::atomic::AtomicU32;
use numeric_array::typenum::*;
extern crate alloc;
use alloc::sync::Arc;
use alloc::vec::Vec;

/// Binary operation for the monoidal reducer.
pub trait Monoidal<T>: Clone {
    fn binop(&self, x: T, y: T) -> T;
}

#[derive(Default, Clone)]
pub struct Amplitude<T: Num> {
    _marker: core::marker::PhantomData<T>,
}

impl<T: Num> Amplitude<T> {
    pub fn new() -> Self {
        Amplitude::default()
    }
}

impl<T: Num> Monoidal<T> for Amplitude<T> {
    #[inline]
    fn binop(&self, x: T, y: T) -> T {
        max(abs(x), abs(y))
    }
}

#[derive(Default, Clone)]
pub struct Maximum<T: Num> {
    _marker: core::marker::PhantomData<T>,
}

impl<T: Num> Maximum<T> {
    pub fn new() -> Self {
        Maximum::default()
    }
}

impl<T: Num> Monoidal<T> for Maximum<T> {
    #[inline]
    fn binop(&self, x: T, y: T) -> T {
        max(x, y)
    }
}

/// Hierarchic reducer for a monoid.
#[derive(Clone)]
pub struct ReduceBuffer<T, B>
where
    T: Num,
    B: Monoidal<T>,
{
    // First item is unused for convenience. Buffer length is rounded up to an even number.
    buffer: Vec<T>,
    length: usize,
    leaf_offset: usize,
    binop: B,
}

impl<T, B> ReduceBuffer<T, B>
where
    T: Num,
    B: Monoidal<T>,
{
    #[inline]
    fn get_index(&self, i: usize) -> usize {
        self.leaf_offset + i
    }

    // Assumption: 0 is the zero element.
    pub fn new(length: usize, binop: B) -> Self {
        let leaf_offset = length.next_power_of_two();
        let mut buffer = Self {
            buffer: Vec::new(),
            length,
            leaf_offset,
            binop,
        };
        buffer
            .buffer
            .resize(leaf_offset + length + (length & 1), T::zero());
        buffer
    }

    #[inline]
    pub fn length(&self) -> usize {
        self.length
    }

    #[inline]
    pub fn total(&self) -> T {
        self.buffer[1]
    }

    pub fn set(&mut self, index: usize, value: T) {
        let mut i = self.get_index(index);
        self.buffer[i] = value;
        while i > 1 {
            let reduced = self.binop.binop(self.buffer[i], self.buffer[i ^ 1]);
            i >>= 1;
            self.buffer[i] = reduced;
        }
    }

    pub fn clear(&mut self) {
        for i in 0..self.buffer.len() {
            self.buffer[i] = T::zero();
        }
    }
}

/// Look-ahead limiter.
#[derive(Clone)]
pub struct Limiter<N>
where
    N: Size<f32>,
{
    lookahead: f64,
    #[allow(dead_code)]
    release: f64,
    sample_rate: f64,
    reducer: ReduceBuffer<f32, Maximum<f32>>,
    follower: AFollow<f32>,
    buffer: Vec<Frame<f32, N>>,
    index: usize,
}

impl<N> Limiter<N>
where
    N: Size<f32>,
{
    #[inline]
    fn advance(&mut self) {
        self.index += 1;
        if self.index >= self.reducer.length() {
            self.index = 0;
        }
    }

    fn buffer_length(sample_rate: f64, lookahead: f64) -> usize {
        max(1, round(sample_rate * lookahead) as usize)
    }

    fn new_buffer(sample_rate: f64, lookahead: f64) -> ReduceBuffer<f32, Maximum<f32>> {
        ReduceBuffer::new(Self::buffer_length(sample_rate, lookahead), Maximum::new())
    }

    pub fn new(sample_rate: f64, attack_time: f32, release_time: f32) -> Self {
        let mut follower = AFollow::new(attack_time * 0.4, release_time * 0.4);
        follower.set_sample_rate(sample_rate);
        Limiter {
            lookahead: attack_time as f64,
            release: release_time as f64,
            sample_rate,
            follower,
            buffer: Vec::new(),
            reducer: Self::new_buffer(sample_rate, attack_time.to_f64()),
            index: 0,
        }
    }
}

impl<N> AudioNode for Limiter<N>
where
    N: Size<f32>,
{
    const ID: u64 = 25;
    type Inputs = N;
    type Outputs = N;

    fn reset(&mut self) {
        self.set_sample_rate(self.sample_rate);
    }

    fn set_sample_rate(&mut self, sample_rate: f64) {
        self.index = 0;
        self.sample_rate = sample_rate;
        let length = Self::buffer_length(sample_rate, self.lookahead);
        if length != self.reducer.length {
            self.reducer = Self::new_buffer(sample_rate, self.lookahead);
        }
        self.follower.set_sample_rate(sample_rate);
        self.reducer.clear();
        self.buffer.clear();
    }

    #[inline]
    fn tick(&mut self, input: &Frame<f32, Self::Inputs>) -> Frame<f32, Self::Outputs> {
        let amplitude = input.iter().fold(0.0, |amp, &x| max(amp, abs(x)));
        self.reducer.set(self.index, amplitude);
        if self.buffer.len() < self.reducer.length() {
            // We are filling up the initial buffer.
            self.buffer.push(input.clone());
            if self.buffer.len() == self.reducer.length() {
                // When the buffer is full, start following from its total peak.
                self.follower.set_value(self.reducer.total());
            }
            self.advance();
            Frame::default()
        } else {
            let output = self.buffer[self.index].clone();
            self.buffer[self.index] = input.clone();
            // Leave some headroom.
            self.follower
                .filter_mono(max(1.0, self.reducer.total() * 1.10));
            self.advance();
            let limit = self.follower.value();
            output * Frame::splat(1.0 / limit)
        }
    }

    fn route(&mut self, input: &SignalFrame, _frequency: f64) -> SignalFrame {
        let mut output = SignalFrame::new(self.outputs());
        for i in 0..N::USIZE {
            // We pretend that the limiter does not alter the frequency response.
            output.set(i, input.at(i).delay(self.reducer.length() as f64));
        }
        output
    }

    fn allocate(&mut self) {
        if self.buffer.capacity() < self.reducer.length() {
            self.buffer
                .reserve(self.reducer.length() - self.buffer.capacity());
        }
    }
}

/// Transient filter. Multiply the signal with a fade-in curve.
/// After fade-in, pass signal through.
/// - Input 0: input signal
/// - Output 0: filtered signal
#[derive(Default, Clone)]
pub struct Declick<F: Real> {
    t: F,
    duration: F,
    sample_duration: F,
    sample_rate: f64,
}

impl<F: Real> Declick<F> {
    pub fn new(duration: F) -> Self {
        let mut node = Self {
            duration,
            ..Default::default()
        };
        node.set_sample_rate(DEFAULT_SR);
        node
    }
}

impl<F: Real> AudioNode for Declick<F> {
    const ID: u64 = 23;
    type Inputs = U1;
    type Outputs = U1;

    fn reset(&mut self) {
        self.t = F::zero();
    }

    fn set_sample_rate(&mut self, sample_rate: f64) {
        self.sample_rate = sample_rate;
        self.sample_duration = F::from_f64(1.0 / sample_rate);
    }

    #[inline]
    fn tick(&mut self, input: &Frame<f32, Self::Inputs>) -> Frame<f32, Self::Outputs> {
        if self.t < self.duration {
            let phase = delerp(F::zero(), self.duration, self.t);
            let value = smooth5(phase);
            self.t += self.sample_duration;
            [input[0] * value.to_f32()].into()
        } else {
            [input[0]].into()
        }
    }

    fn process(&mut self, size: usize, input: &BufferRef, output: &mut BufferMut) {
        output.channel_mut(0)[..simd_items(size)]
            .clone_from_slice(&input.channel(0)[..simd_items(size)]);
        if self.t < self.duration {
            let mut phase = delerp(F::zero(), self.duration, self.t);
            let phase_d = self.sample_duration / self.duration;
            let end_time = self.t + F::new(size as i64) * self.sample_duration;
            let end_index = if self.duration < end_time {
                ceil((self.duration - self.t) / self.sample_duration).to_i64() as usize
            } else {
                size
            };
            for x in output.channel_f32_mut(0)[0..end_index].iter_mut() {
                *x *= smooth5(phase).to_f32();
                phase += phase_d;
            }
            self.t = end_time;
        }
    }

    fn route(&mut self, input: &SignalFrame, _frequency: f64) -> SignalFrame {
        // We pretend that the declicker does not alter the frequency response.
        input.clone()
    }
}

/// Metering modes.
#[derive(Copy, Clone)]
pub enum Meter {
    /// Latest value.
    Sample,
    /// Peak meter with smoothing timescale in seconds.
    /// Smoothing timescale is the time it takes for level estimation to move halfway to a new level.
    Peak(f64),
    /// RMS meter with smoothing timescale in seconds.
    /// Smoothing timescale is the time it takes for level estimation to move halfway to a new level.
    Rms(f64),
}

impl Meter {
    /// Whether the meter mode depends only on the latest sample.
    pub fn latest_only(&self) -> bool {
        matches!(self, Meter::Sample)
    }
}

#[derive(Clone)]
pub struct MeterState {
    /// Per-sample smoothing calculated from smoothing timescale.
    smoothing: f32,
    /// Current meter level.
    state: f32,
}

impl MeterState {
    /// Create a new MeterState for the given metering mode.
    pub fn new(meter: Meter) -> Self {
        let mut state = Self {
            smoothing: 0.0,
            state: 0.0,
        };
        state.set_sample_rate(meter, DEFAULT_SR);
        state
    }

    /// Reset meter state.
    pub fn reset(&mut self, _meter: Meter) {
        self.state = 0.0;
    }

    /// Set meter sample rate.
    pub fn set_sample_rate(&mut self, meter: Meter, sample_rate: f64) {
        let timescale = match meter {
            Meter::Sample => {
                return;
            }
            Meter::Peak(timescale) => timescale,
            Meter::Rms(timescale) => timescale,
        };
        self.smoothing = (pow(0.5f64, 1.0 / (timescale * sample_rate))).to_f32();
    }

    /// Process an input sample.
    #[inline]
    pub fn tick(&mut self, meter: Meter, value: f32) {
        match meter {
            Meter::Sample => self.state = value,
            Meter::Peak(_) => self.state = max(self.state * self.smoothing, abs(value)),
            Meter::Rms(_) => {
                self.state = self.state * self.smoothing + squared(value) * (1.0 - self.smoothing)
            }
        }
    }

    /// Current meter level.
    #[inline]
    pub fn level(&self, meter: Meter) -> f32 {
        match meter {
            Meter::Sample => self.state,
            Meter::Peak(_) => self.state,
            Meter::Rms(_) => sqrt(self.state),
        }
    }
}

/// Meters the input and outputs a summary according to the chosen metering mode.
/// - Input 0: input signal
/// - Output 0: input summary
#[derive(Clone)]
pub struct MeterNode {
    meter: Meter,
    state: MeterState,
}

impl MeterNode {
    /// Create a new metering node.
    pub fn new(meter: Meter) -> Self {
        Self {
            meter,
            state: MeterState::new(meter),
        }
    }
}

impl AudioNode for MeterNode {
    const ID: u64 = 61;
    type Inputs = U1;
    type Outputs = U1;

    fn reset(&mut self) {
        self.state.reset(self.meter);
    }

    fn set_sample_rate(&mut self, sample_rate: f64) {
        self.state.set_sample_rate(self.meter, sample_rate);
    }

    #[inline]
    fn tick(&mut self, input: &Frame<f32, Self::Inputs>) -> Frame<f32, Self::Outputs> {
        self.state.tick(self.meter, input[0]);
        [convert(self.state.level(self.meter))].into()
    }

    fn route(&mut self, input: &SignalFrame, _frequency: f64) -> SignalFrame {
        let mut output = SignalFrame::new(self.outputs());
        output.set(0, input.at(0).distort(0.0));
        output
    }
}

/// Pass through input unchanged.
/// Summary of the input signal is placed in a shared variable.
pub struct Monitor {
    meter: Meter,
    state: MeterState,
    shared: Arc<AtomicU32>,
}

impl Clone for Monitor {
    fn clone(&self) -> Self {
        Self {
            meter: self.meter,
            state: self.state.clone(),
            shared: Arc::clone(&self.shared),
        }
    }
}

impl Monitor {
    /// Create a new monitor node.
    pub fn new(shared: &Shared, meter: Meter) -> Self {
        Self {
            meter,
            state: MeterState::new(meter),
            shared: Arc::clone(shared.get_shared()),
        }
    }
}

impl AudioNode for Monitor {
    const ID: u64 = 56;
    type Inputs = U1;
    type Outputs = U1;

    fn reset(&mut self) {
        self.state.reset(self.meter);
    }

    fn set_sample_rate(&mut self, sample_rate: f64) {
        self.state.set_sample_rate(self.meter, sample_rate);
    }

    #[inline]
    fn tick(&mut self, input: &Frame<f32, Self::Inputs>) -> Frame<f32, Self::Outputs> {
        self.state.tick(self.meter, input[0]);
        f32::store(&self.shared, self.state.level(self.meter));
        *input
    }

    fn process(&mut self, size: usize, input: &BufferRef, output: &mut BufferMut) {
        if size == 0 {
            return;
        }
        if self.meter.latest_only() {
            self.state.tick(self.meter, input.at_f32(0, size - 1));
        } else {
            for i in 0..size {
                self.state.tick(self.meter, input.at_f32(0, i));
            }
        }
        // For efficiency, store the value only once per block.
        f32::store(&self.shared, self.state.level(self.meter));
        output.channel_mut(0)[..simd_items(size)]
            .clone_from_slice(&input.channel(0)[..simd_items(size)]);
    }

    fn route(&mut self, input: &SignalFrame, _frequency: f64) -> SignalFrame {
        input.clone()
    }
}