1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
// Copyright (C) myl7
// SPDX-License-Identifier: Apache-2.0

//! See [`Dpf`]

use bitvec::prelude::*;
#[cfg(feature = "multi-thread")]
use rayon::prelude::*;

use crate::group::byte::utils::{xor, xor_inplace};
use crate::group::Group;
pub use crate::PointFn;
use crate::{decl_prg_trait, Cw, Share};

#[cfg(feature = "prg")]
pub mod prg;

/// Distributed point function API
///
/// `PointFn` used here means `$f(x) = \beta$` iff. `$x = \alpha$`, otherwise `$f(x) = 0$`.
///
/// See [`PointFn`] for `N` and `LAMBDA`.
pub trait Dpf<const N: usize, const LAMBDA: usize, G>
where
    G: Group<LAMBDA>,
{
    /// `s0s` is `$s^{(0)}_0$` and `$s^{(0)}_1$` which should be randomly sampled
    fn gen(&self, f: &PointFn<N, LAMBDA, G>, s0s: [&[u8; LAMBDA]; 2]) -> Share<LAMBDA, G>;

    /// `b` is the party. `false` is 0 and `true` is 1.
    fn eval(&self, b: bool, k: &Share<LAMBDA, G>, xs: &[&[u8; N]], ys: &mut [&mut G]);
}

decl_prg_trait!(([u8; LAMBDA], bool));

/// [`Dpf`] impl
///
/// `$\alpha$` itself is not included, which means `$f(\alpha)$ = 0`.
pub struct DpfImpl<const N: usize, const LAMBDA: usize, PrgT>
where
    PrgT: Prg<LAMBDA>,
{
    prg: PrgT,
}

impl<const N: usize, const LAMBDA: usize, PrgT> DpfImpl<N, LAMBDA, PrgT>
where
    PrgT: Prg<LAMBDA>,
{
    pub fn new(prg: PrgT) -> Self {
        Self { prg }
    }
}

const IDX_L: usize = 0;
const IDX_R: usize = 1;

impl<const N: usize, const LAMBDA: usize, PrgT, G> Dpf<N, LAMBDA, G> for DpfImpl<N, LAMBDA, PrgT>
where
    PrgT: Prg<LAMBDA>,
    G: Group<LAMBDA>,
{
    fn gen(&self, f: &PointFn<N, LAMBDA, G>, s0s: [&[u8; LAMBDA]; 2]) -> Share<LAMBDA, G> {
        // The bit size of `$\alpha$`
        let n = 8 * N;
        // let mut v_alpha = G::zero();
        let mut ss = Vec::<[[u8; LAMBDA]; 2]>::with_capacity(n + 1);
        // Set `$s^{(1)}_0$` and `$s^{(1)}_1$`
        ss.push([s0s[0].to_owned(), s0s[1].to_owned()]);
        let mut ts = Vec::<[bool; 2]>::with_capacity(n + 1);
        // Set `$t^{(0)}_0$` and `$t^{(0)}_1$`
        ts.push([false, true]);
        let mut cws = Vec::<Cw<LAMBDA, G>>::with_capacity(n);
        for i in 1..n + 1 {
            let [(s0l, t0l), (s0r, t0r)] = self.prg.gen(&ss[i - 1][0]);
            let [(s1l, t1l), (s1r, t1r)] = self.prg.gen(&ss[i - 1][1]);
            // MSB is required since we index from high to low in arrays
            let alpha_i = f.alpha.view_bits::<Msb0>()[i - 1];
            let (keep, lose) = if alpha_i {
                (IDX_R, IDX_L)
            } else {
                (IDX_L, IDX_R)
            };
            let s_cw = xor(&[[&s0l, &s0r][lose], [&s1l, &s1r][lose]]);
            let tl_cw = t0l ^ t1l ^ alpha_i ^ true;
            let tr_cw = t0r ^ t1r ^ alpha_i;
            let cw = Cw {
                s: s_cw,
                v: G::zero(),
                tl: tl_cw,
                tr: tr_cw,
            };
            cws.push(cw);
            ss.push([
                xor(&[
                    [&s0l, &s0r][keep],
                    if ts[i - 1][0] { &s_cw } else { &[0; LAMBDA] },
                ]),
                xor(&[
                    [&s1l, &s1r][keep],
                    if ts[i - 1][1] { &s_cw } else { &[0; LAMBDA] },
                ]),
            ]);
            ts.push([
                [t0l, t0r][keep] ^ (ts[i - 1][0] & [tl_cw, tr_cw][keep]),
                [t1l, t1r][keep] ^ (ts[i - 1][1] & [tl_cw, tr_cw][keep]),
            ]);
        }
        assert_eq!((ss.len(), ts.len(), cws.len()), (n + 1, n + 1, n));
        let cw_np1 = (f.beta.clone() + Into::<G>::into(ss[n][0]).add_inverse() + ss[n][1].into())
            .add_inverse_if(ts[n][1]);
        Share {
            s0s: vec![s0s[0].to_owned(), s0s[1].to_owned()],
            cws,
            cw_np1,
        }
    }

    fn eval(&self, b: bool, k: &Share<LAMBDA, G>, xs: &[&[u8; N]], ys: &mut [&mut G]) {
        let n = k.cws.len();
        assert_eq!(n, N * 8);
        let f = |x: &[u8; N], v: &mut G| {
            let mut ss = Vec::<[u8; LAMBDA]>::with_capacity(n + 1);
            ss.push(k.s0s[0].to_owned());
            let mut ts = Vec::<bool>::with_capacity(n + 1);
            ts.push(b);
            for i in 1..n + 1 {
                let cw = &k.cws[i - 1];
                let [(mut sl, mut tl), (mut sr, mut tr)] = self.prg.gen(&ss[i - 1]);
                xor_inplace(&mut sl, &[if ts[i - 1] { &cw.s } else { &[0; LAMBDA] }]);
                xor_inplace(&mut sr, &[if ts[i - 1] { &cw.s } else { &[0; LAMBDA] }]);
                tl ^= ts[i - 1] & cw.tl;
                tr ^= ts[i - 1] & cw.tr;
                if x.view_bits::<Msb0>()[i - 1] {
                    ss.push(sr);
                    ts.push(tr);
                } else {
                    ss.push(sl);
                    ts.push(tl);
                }
            }
            assert_eq!((ss.len(), ts.len()), (n + 1, n + 1));
            *v = (Into::<G>::into(ss[n]) + if ts[n] { k.cw_np1.clone() } else { G::zero() })
                .add_inverse_if(b);
        };
        // TODO: Seperated entries
        #[cfg(feature = "multi-thread")]
        {
            xs.par_iter()
                .zip(ys.par_iter_mut())
                .for_each(|(x, y)| f(x, y));
        }
        #[cfg(not(feature = "multi-thread"))]
        {
            xs.iter().zip(ys.iter_mut()).for_each(|(x, y)| f(x, y));
        }
    }
}

#[cfg(all(test, feature = "prg"))]
mod tests {
    use rand::prelude::*;

    use super::prg::Aes256HirosePrg;
    use super::*;
    use crate::group::byte::ByteGroup;

    const KEYS: [&[u8; 32]; 2] = [
        b"j9\x1b_\xb3X\xf33\xacW\x15\x1b\x0812K\xb3I\xb9\x90r\x1cN\xb5\xee9W\xd3\xbb@\xc6d",
        b"\x9b\x15\xc8\x0f\xb7\xbc!q\x9e\x89\xb8\xf7\x0e\xa0S\x9dN\xfa\x0c;\x16\xe4\x98\x82b\xfcdy\xb5\x8c{\xc2",
    ];
    const ALPHAS: &[&[u8; 16]] = &[
        b"K\xa9W\xf5\xdd\x05\xe9\xfc?\x04\xf6\xfbUo\xa8C",
        b"\xc2GK\xda\xc6\xbb\x99\x98Fq\"f\xb7\x8csU",
        b"\xc2GK\xda\xc6\xbb\x99\x98Fq\"f\xb7\x8csV",
        b"\xc2GK\xda\xc6\xbb\x99\x98Fq\"f\xb7\x8csW",
        b"\xef\x96\x97\xd7\x8f\x8a\xa4AP\n\xb35\xb5k\xff\x97",
    ];
    const BETA: &[u8; 16] = b"\x03\x11\x97\x12C\x8a\xe9#\x81\xa8\xde\xa8\x8f \xc0\xbb";

    #[test]
    fn test_dpf_gen_then_eval() {
        let prg = Aes256HirosePrg::new(KEYS);
        let dpf = DpfImpl::<16, 16, _>::new(prg);
        let s0s: [[u8; 16]; 2] = thread_rng().gen();
        let f = PointFn {
            alpha: ALPHAS[2].to_owned(),
            beta: BETA.clone().into(),
        };
        let k = dpf.gen(&f, [&s0s[0], &s0s[1]]);
        let mut k0 = k.clone();
        k0.s0s = vec![k0.s0s[0]];
        let mut k1 = k.clone();
        k1.s0s = vec![k1.s0s[1]];
        let mut ys0 = vec![ByteGroup::zero(); ALPHAS.len()];
        let mut ys1 = vec![ByteGroup::zero(); ALPHAS.len()];
        dpf.eval(false, &k0, ALPHAS, &mut ys0.iter_mut().collect::<Vec<_>>());
        dpf.eval(true, &k1, ALPHAS, &mut ys1.iter_mut().collect::<Vec<_>>());
        ys0.iter_mut()
            .zip(ys1.iter())
            .for_each(|(y0, y1)| *y0 += y1.clone());
        ys1 = vec![
            ByteGroup::zero(),
            ByteGroup::zero(),
            BETA.clone().into(),
            ByteGroup::zero(),
            ByteGroup::zero(),
        ];
        assert_eq!(ys0, ys1);
    }

    #[test]
    fn test_dpf_gen_then_eval_not_zeros() {
        let prg = Aes256HirosePrg::new(KEYS);
        let dpf = DpfImpl::<16, 16, _>::new(prg);
        let s0s: [[u8; 16]; 2] = thread_rng().gen();
        let f = PointFn {
            alpha: ALPHAS[2].to_owned(),
            beta: BETA.clone().into(),
        };
        let k = dpf.gen(&f, [&s0s[0], &s0s[1]]);
        let mut k0 = k.clone();
        k0.s0s = vec![k0.s0s[0]];
        let mut k1 = k.clone();
        k1.s0s = vec![k1.s0s[1]];
        let mut ys0 = vec![ByteGroup::zero(); ALPHAS.len()];
        let mut ys1 = vec![ByteGroup::zero(); ALPHAS.len()];
        dpf.eval(false, &k0, ALPHAS, &mut ys0.iter_mut().collect::<Vec<_>>());
        dpf.eval(true, &k1, ALPHAS, &mut ys1.iter_mut().collect::<Vec<_>>());
        assert_ne!(ys0[2], ByteGroup::zero());
        assert_ne!(ys1[2], ByteGroup::zero());
    }
}